| Cars {rrcov} | R Documentation |
Consumer reports car data: dimensions
Description
A data frame containing 11 variables with different dimensions of 111 cars
Usage
data(Cars)
Format
A data frame with 111 observations on the following 11 variables.
lengtha numeric vector
wheelbasea numeric vector
widtha numeric vector
heighta numeric vector
front.hda numeric vector
rear.hda numeric vector
front.lega numeric vector
rear.seatinga numeric vector
front.shouldera numeric vector
rear.shouldera numeric vector
luggagea numeric vector
Source
Consumer reports. (April 1990). http://backissues.com/issue/Consumer-Reports-April-1990, pp. 235–288.
References
Chambers, J. M. and Hastie, T. J. (1992). Statistical models in S. Cole, Pacific Grove, CA: Wadsworth and Brooks, pp. 46–47.
M. Hubert, P. J. Rousseeuw, K. Vanden Branden (2005), ROBPCA: A new approach to robust principal components analysis, Technometrics, 47, 64–79.
Examples
data(Cars)
## Plot a pairwise scaterplot matrix
pairs(Cars[,1:6])
mcd <- CovMcd(Cars[,1:6])
plot(mcd, which="pairs")
## Start with robust PCA
pca <- PcaHubert(Cars, k=ncol(Cars), kmax=ncol(Cars))
pca
## Compare with the classical PCA
prcomp(Cars)
## or
PcaClassic(Cars, k=ncol(Cars), kmax=ncol(Cars))
## If you want to print the scores too, use
print(pca, print.x=TRUE)
## Using the formula interface
PcaHubert(~., data=Cars, k=ncol(Cars), kmax=ncol(Cars))
## To plot the results:
plot(pca) # distance plot
pca2 <- PcaHubert(Cars, k=4)
plot(pca2) # PCA diagnostic plot (or outlier map)
## Use the standard plots available for prcomp and princomp
screeplot(pca) # it is interesting with all variables
biplot(pca) # for biplot we need more than one PCs
## Restore the covraiance matrix
py <- PcaHubert(Cars, k=ncol(Cars), kmax=ncol(Cars))
cov.1 <- py@loadings %*% diag(py@eigenvalues) %*% t(py@loadings)
cov.1
[Package rrcov version 1.7-5 Index]