| kinship.BLUP {rrBLUP} | R Documentation | 
Genomic prediction by kinship-BLUP (deprecated)
Description
***This function has been superseded by kin.blup; please refer to its help page.
Usage
kinship.BLUP(y, G.train, G.pred=NULL, X=NULL, Z.train=NULL, 
     K.method="RR", n.profile=10, mixed.method="REML", n.core=1)
Arguments
| y | Vector ( | 
| G.train | Matrix ( | 
| G.pred | Matrix ( | 
| X | Design matrix ( | 
| Z.train | 0-1 matrix ( | 
| K.method | "RR" (default) is ridge regression, for which K is the realized additive relationship matrix computed with  | 
| n.profile | For K.method = "GAUSS" or "EXP", the number of points to use in the log-likelihood profile for the scale parameter  | 
| mixed.method | Either "REML" (default) or "ML". | 
| n.core | Setting n.core > 1 will enable parallel execution of the Gaussian kernel computation (use only at UNIX command line). | 
Value
- $g.train
- BLUP solution for the training set 
- $g.pred
- BLUP solution for the prediction set (when G.pred != NULL) 
- $beta
- ML estimate of fixed effects 
For GAUSS or EXP, function also returns
- $profile
- log-likelihood profile for the scale parameter 
References
Endelman, J.B. 2011. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250-255.
Examples
#random population of 200 lines with 1000 markers
G <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {
  G[i,] <- ifelse(runif(1000)<0.5,-1,1)
}
#random phenotypes
g <- as.vector(crossprod(t(G),rnorm(1000)))
h2 <- 0.5 
y <- g + rnorm(200,mean=0,sd=sqrt((1-h2)/h2*var(g)))
#split in half for training and prediction
train <- 1:100
pred <- 101:200
ans <- kinship.BLUP(y=y[train],G.train=G[train,],G.pred=G[pred,],K.method="GAUSS")
#correlation accuracy
r.gy <- cor(ans$g.pred,y[pred])