rqlm {rqlm} | R Documentation |
Modified Poisson and least-squares regression analyses for binary outcomes
Description
Modified Poisson and least-squares regression analyses for binary outcomes are performed. This function is handled by a similar way with lm
or glm
. The model fitting to the binary data can be specified by family
. Also, the resultant coefficients and confidence limits can be transformed to exponential scales by specifying eform
. The standard error estimates are calculated using the standard robust variance estimator by sandwich
package.
Usage
rqlm(formula, data, family=poisson, eform=FALSE, cl=0.95, digits=4)
Arguments
formula |
An object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. |
data |
A data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. |
family |
A description of the error distribution and link function to be used in the model. |
eform |
A logical value that specify whether the outcome should be transformed by exponential function (default: |
cl |
Confidence level for calculating confidence intervals (default: 0.95) |
digits |
Number of decimal places in the output (default: 4). |
Value
Results of the modified Poisson and least-squares regression analyses.
-
coef
: Coefficient estimates; transformed to the exponential scale ifeform=TRUE
. -
SE
: Robust standard error estimates forcoef
. -
CL
: Lower limits of confidence intervals. -
CU
: Upper limits of confidence intervals. -
P-value
: P-values for the coefficient tests.
References
Cheung, Y. B. (2007). A modified least-squares regression approach to the estimation of risk difference. American Journal of Epidemiology 166, 1337-1344.
Noma, H. and Gosho, M. (2024). Bootstrap confidence intervals based on quasi-likelihood estimating functions for the modified Poisson and least-squares regressions for binary outcomes. Forthcoming.
White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1-25.
Zou, G. (2004). A modified poisson regression approach to prospective studies with binary data. American Journal of Epidemiology 159, 702-706.
Examples
data(exdata02)
rqlm(y ~ x1 + x2 + x3 + x4, data=exdata02, family=poisson, eform=TRUE)
# Modifed Poisson regression analysis
# Coefficient estimates are translated to risk ratio scales
rqlm(y ~ x1 + x2 + x3 + x4, data=exdata02, family=gaussian)
# Modifed least-squares regression analysis
rqlm(y ~ x1 + x2 + x3 + x4, data=exdata02, family=gaussian, digits=3)
# Modifed least-squares regression analysis
# Number of decimal places can be changed by specifying "digits"