qic.select {rqPen}R Documentation

Select tuning parameters using IC

Description

Selects tuning parameter \lambda and a according to information criterion of choice. For a given \hat{\beta} the information criterion is calculated as

\log(\sum_{i=1}^n w_i \rho_\tau(y_i-x_i^\top\hat{\beta})) + d*b/(2n),

where d is the number of nonzero coefficients and b depends on the method used. For AIC b=2, for BIC b=log(n) and for PBIC d=log(n)*log(p) where p is the dimension of \hat{\beta}. If septau set to FALSE then calculations are made across the quantiles. Let \hat{\beta}^q be the coefficient vector for the qth quantile of Q quantiles. In addition let d_q and b_q be d and b values from the qth quantile model. Note, for all of these we are assuming eqn and a are the same. Then the summary across all quantiles is

\sum_{q=1}^Q w_q[ \log(\sum_{i=1}^n m_i \rho_\tau(y_i-x_i^\top\hat{\beta}^q)) + d_q*b_q/(2n)],

where w_q is the weight assigned for the qth quantile model.

Usage

qic.select(obj, ...)

Arguments

obj

A rq.pen.seq or rq.pen.seq.cv object.

...

Additional arguments see qic.select.rq.pen.seq() or qic.select.rq.pen.seq.cv() for more information.

Value

Returns a qic.select object.

Author(s)

Ben Sherwood, ben.sherwood@ku.edu

References

Lee ER, Noh H, Park BU (2014). “Model Selection via Bayesian Information Criterion for Quantile Regression Models.” Journal of the American Statistical Association, 109(505), 216–229. ISSN 01621459.

Examples

set.seed(1)
x <- matrix(runif(800),ncol=8)
y <- 1 + x[,1] + x[,8] + (1+.5*x[,3])*rnorm(100)
m1 <- rq.pen(x,y,penalty="ENet",a=c(0,.5,1),tau=c(.25,.75))
qic.select(m1)

[Package rqPen version 4.1.1 Index]