predict.rq.pen.seq {rqPen} | R Documentation |
Predictions from rq.pen.seq object
Description
Predictions from rq.pen.seq object
Usage
## S3 method for class 'rq.pen.seq'
predict(
object,
newx,
tau = NULL,
a = NULL,
lambda = NULL,
modelsIndex = NULL,
lambdaIndex = NULL,
...
)
Arguments
object |
rq.pen.seq object |
newx |
Matrix of predictors |
tau |
Quantile of interest. Default is NULL, which will return all quantiles. Should not be specified if modelsIndex is used. |
a |
Tuning parameter of a. Default is NULL, which returns coefficients for all values of a. Should not be specified if modelsIndex is used. |
lambda |
Tuning parameter of |
modelsIndex |
Index of the models for which coefficients should be returned. Does not need to be specified if tau or a are specified. |
lambdaIndex |
Index of the lambda values for which coefficients should be returned. Does not need to be specified if lambda is specified. |
... |
Additional parameters passed to coef.rq.pen.seq() |
Value
A matrix of predictions for each tau and a combination
Author(s)
Ben Sherwood, ben.sherwood@ku.edu
Examples
x <- matrix(runif(800),ncol=8)
y <- 1 + x[,1] + x[,8] + (1+.5*x[,3])*rnorm(100)
m1 <- rq.pen(x,y,penalty="ENet",a=c(0,.5,1),tau=c(.25,.75),lambda=c(.1,.05,.01))
newx <- matrix(runif(80),ncol=8)
allCoefs <- predict(m1,newx)
targetCoefs <- predict(m1,newx,tau=.25,a=.5,lambda=.1)
idxApproach <- predict(m1,newx,modelsIndex=2)
bothIdxApproach <- predict(m1,newx,modelsIndex=2,lambdaIndex=1)