predict.rq.pen.seq.cv {rqPen} | R Documentation |
Predictions from rq.pen.seq.cv object
Description
Predictions from rq.pen.seq.cv object
Usage
## S3 method for class 'rq.pen.seq.cv'
predict(
object,
newx,
tau = NULL,
septau = ifelse(object$fit$penalty != "gq", TRUE, FALSE),
cvmin = TRUE,
useDefaults = TRUE,
...
)
Arguments
object |
rq.pen.seq.cv object |
newx |
Matrix of predictors |
tau |
Quantile of interest. Default is NULL, which will return all quantiles. Should not be specified if modelsIndex is used. |
septau |
Whether tuning parameter should be optimized separately for each quantile. |
cvmin |
If TRUE then minimum error is used, if FALSE then one standard error rule is used. |
useDefaults |
Whether the default results are used. Set to FALSE if you you want to specify specific models and lambda values. |
... |
Additional parameters sent to coef.rq.pen.seq.cv(). |
Value
A matrix of predictions for each tau and a combination
Author(s)
Ben Sherwood, ben.sherwood@ku.edu
Examples
x <- matrix(runif(1600),ncol=8)
y <- 1 + x[,1] + x[,8] + (1+.5*x[,3])*rnorm(200)
m1 <- rq.pen.cv(x,y,penalty="ENet",a=c(0,.5,1),tau=c(.25,.75),lambda=c(.1,.05,.01))
newx <- matrix(runif(80),ncol=8)
cvpreds <- predict(m1,newx)
[Package rqPen version 4.1.1 Index]