reticulate-reexports {rpymat}R Documentation

Wrappers around 'reticulate' package

Description

Almost the same with 'reticulate' functions, with rpymat enabled by default and some minor changes (see parameter convert and local)

Usage

import_main(convert = FALSE)

tuple(..., convert = FALSE)

py_tuple(..., convert = FALSE)

py_help(object)

np_array(data, ...)

import(module, as = NULL, convert = FALSE, delay_load = FALSE)

r_to_py(x, convert = FALSE)

py_to_r(x)

py_to_r_wrapper(x)

py_str(object, ...)

py_run_string(code, local = TRUE, convert = FALSE)

py_bool(x)

py_dict(keys, values, convert = FALSE)

py_call(x, ...)

py_del_attr(x, name)

py_del_item(x, name)

py_eval(code, convert = FALSE)

py_get_attr(x, name, silent = FALSE)

py_set_attr(x, name, value)

py_get_item(x, key, silent = FALSE)

py_set_item(x, name, value)

py_len(x, default = NULL)

py_none()

Arguments

convert

whether to convert 'Python' objects to R; default is FALSE. This is different to 'reticulate', but less error prone: users must explicitly convert 'Python' objects to R.

object, data, x, code, keys, values, ...

passed to corresponding 'reticulate' functions as data inputs

module, as, delay_load

import 'Python' module as alias

local

whether to execute code locally so the memory sets free when the function ends; default is true

name, silent, key, value, default

other parameters passing to the 'reticulate' functions

Value

'Python' built-in objects

Examples


library(rpymat)
if(interactive() && dir.exists(env_path())) {

  # tuple
  x <- tuple(1, 2, "a")
  print(x)

  # convert to R object
  py_to_r(x)

  # convert R object to python
  y <- r_to_py(list(a = 1, b = "s"))

  # get element
  py_get_item(y, "a")

  # get missing element
  py_get_item(y, "c", silent = TRUE)

}


[Package rpymat version 0.1.7 Index]