getFinalConfidenceInterval {rpact} | R Documentation |
Get Final Confidence Interval
Description
Returns the final confidence interval for the parameter of interest. It is based on the prototype case, i.e., the test for testing a mean for normally distributed variables.
Usage
getFinalConfidenceInterval(
design,
dataInput,
...,
directionUpper = TRUE,
thetaH0 = NA_real_,
tolerance = 1e-06,
stage = NA_integer_
)
Arguments
design |
The trial design. |
dataInput |
The summary data used for calculating the test results.
This is either an element of |
... |
Further (optional) arguments to be passed:
|
directionUpper |
Logical. Specifies the direction of the alternative,
only applicable for one-sided testing; default is |
thetaH0 |
The null hypothesis value,
default is
For testing a rate in one sample, a value |
tolerance |
The numerical tolerance, default is |
stage |
The stage number (optional). Default: total number of existing stages in the data input. |
Details
Depending on design
and dataInput
the final confidence interval and median unbiased estimate
that is based on the stage-wise ordering of the sample space will be calculated and returned.
Additionally, a non-standardized ("general") version is provided,
the estimated standard deviation must be used to obtain
the confidence interval for the parameter of interest.
For the inverse normal combination test design with more than two stages, a warning informs that the validity of the confidence interval is theoretically shown only if no sample size change was performed.
Value
Returns a list
containing
-
finalStage
, -
medianUnbiased
, -
finalConfidenceInterval
, -
medianUnbiasedGeneral
, and -
finalConfidenceIntervalGeneral
.
See Also
Other analysis functions:
getAnalysisResults()
,
getClosedCombinationTestResults()
,
getClosedConditionalDunnettTestResults()
,
getConditionalPower()
,
getConditionalRejectionProbabilities()
,
getFinalPValue()
,
getRepeatedConfidenceIntervals()
,
getRepeatedPValues()
,
getStageResults()
,
getTestActions()
Examples
## Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(
n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)
)
getFinalConfidenceInterval(design, dataInput = data)
## End(Not run)