rotationForest {rotationForest} | R Documentation |
Binary classification with Rotation Forest (Rodriguez en Kuncheva, 2006)
Description
rotationForest
implements an ensemble method where each base classifier (tree) is fit on the principal components of the variables of random partitions of the feature set.
Usage
rotationForest(x, y, K = round(ncol(x)/3, 0), L = 10, verbose = FALSE,
...)
Arguments
x |
A data frame of predictors (numeric, or integer). Categorical variables need to be transformed to indicator (dummy) variables. At minimum |
y |
A factor containing the response vector. Only {0,1} is allowed. |
K |
The number of variable subsets. The default is the value |
L |
The number of base classifiers (trees using the |
verbose |
Boolean. Should information about the subsets be printed? |
... |
Arguments to |
Value
An object of class rotationForest
, which is a list with the following elements:
models |
A list of trees. |
loadings |
A list of loadings. |
columnnames |
Column names of x. |
Author(s)
Michel Ballings and Dirk Van den Poel, Maintainer: Michel.Ballings@GMail.com
References
Rodriguez, J.J., Kuncheva, L.I., 2006. Rotation forest: A new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1619-1630. doi:10.1109/TPAMI.2006.211
See Also
Examples
data(iris)
y <- as.factor(ifelse(iris$Species[1:100]=="setosa",0,1))
x <- iris[1:100,-5]
rF <- rotationForest(x,y)
predict(object=rF,newdata=x)