example2_tsp_sann {roptim} | R Documentation |
Example 2: Solve Travelling Salesman Problem (TSP) using SANN
Description
Solve Travelling Salesman Problem (TSP) using SANN.
Usage
example2_tsp_sann(distmat, x)
Arguments
distmat |
a distance matrix for storing all pair of locations. |
x |
initial route. |
Examples
## Combinatorial optimization: Traveling salesman problem
library(stats) # normally loaded
eurodistmat <- as.matrix(eurodist)
distance <- function(sq) { # Target function
sq2 <- embed(sq, 2)
sum(eurodistmat[cbind(sq2[,2], sq2[,1])])
}
genseq <- function(sq) { # Generate new candidate sequence
idx <- seq(2, NROW(eurodistmat)-1)
changepoints <- sample(idx, size = 2, replace = FALSE)
tmp <- sq[changepoints[1]]
sq[changepoints[1]] <- sq[changepoints[2]]
sq[changepoints[2]] <- tmp
sq
}
sq <- c(1:nrow(eurodistmat), 1) # Initial sequence: alphabetic
distance(sq)
# rotate for conventional orientation
loc <- -cmdscale(eurodist, add = TRUE)$points
x <- loc[,1]; y <- loc[,2]
s <- seq_len(nrow(eurodistmat))
tspinit <- loc[sq,]
plot(x, y, type = "n", asp = 1, xlab = "", ylab = "",
main = "initial solution of traveling salesman problem", axes = FALSE)
arrows(tspinit[s,1], tspinit[s,2], tspinit[s+1,1], tspinit[s+1,2],
angle = 10, col = "green")
text(x, y, labels(eurodist), cex = 0.8)
## The original R optimization:
## set.seed(123) # chosen to get a good soln relatively quickly
## res <- optim(sq, distance, genseq, method = "SANN",
## control = list(maxit = 30000, temp = 2000, trace = TRUE,
## REPORT = 500))
## res # Near optimum distance around 12842
## corresponding C++ implementation:
set.seed(4) # chosen to get a good soln relatively quickly
res <- example2_tsp_sann(eurodistmat, sq)
tspres <- loc[res$par,]
plot(x, y, type = "n", asp = 1, xlab = "", ylab = "",
main = "optim() 'solving' traveling salesman problem", axes = FALSE)
arrows(tspres[s,1], tspres[s,2], tspres[s+1,1], tspres[s+1,2],
angle = 10, col = "red")
text(x, y, labels(eurodist), cex = 0.8)
[Package roptim version 0.1.6 Index]