score_data {rollmatch} | R Documentation |
Create propensity scores using a logistic or probit regression model
Description
Create propensity scores using a logistic or probit regression model
Usage
score_data(reduced_data, model_type, match_on, fm, treat, tm, entry, id)
Arguments
reduced_data |
Dataframe of reduced treatment and comparison data. See output of reduce_data(). |
model_type |
Use logistic regression ("logistic") or "probit" regression ("probit") to estimate the predicted probability of participating |
match_on |
Match on estimated propensity score ("pscore") or logit of estimated propensity score ("logit"). |
fm |
A |
treat |
String for name of treatment variable in data. |
tm |
String for time period indicator variable name in data. |
entry |
String for name of time period in which the participant enrolled in the intervention (in the same units as the tm variable). |
id |
String for individual id variable name in data. |
Value
A copy of reduced_data input with added propensity scores
Examples
## Not run:
data(package="rollmatch", "rem_synthdata_small")
fm <- as.formula(treat ~ qtr_pmt + age + is_male + is_white)
reduced_data <- reduce_data(data = rem_synthdata_small, treat = "treat",
tm = "quarter", entry = "entry_q",
id = "indiv_id", lookback = 1)
scored_data <- score_data(reduced_data = reduced_data,
model_type = "logistic", match_on = "logit",
fm = fm, treat = "treat", tm = "quarter",
entry = "entry_q", id = "indiv_id")
head(scored_data)
## End(Not run)