plot.tpopt {rodd} | R Documentation |
Plot of
function for resulting design
Description
Plots the function for resulting approximation
of the
-optimal design achieved with the help of
tpopt
. The definition of can be found in the “details” section of function's
tpopt
specifications.
Usage
## S3 method for class 'tpopt'
plot(x, ...)
Arguments
x |
an object of type "tpopt". |
... |
additional graphical parameters. |
Details
We are interested in the shape of function when we want to ensure the convergence of the algorithm. If algorithm had converged, then support points of
(which are represented by dots) will be near local maximums of the mentioned function. Furthermore, at all local maximums
should have the same value. Otherwise something went wrong and the algorithm should be restarted with another parameters.
See Also
tpopt
, summary.tpopt
, print.tpopt
Examples
#List of models
eta.1 = function(x, theta.1)
theta.1[1] + theta.1[2] * x + theta.1[3] * (x ^ 2) +
theta.1[4] * (x ^ 3) + theta.1[5] * (x ^ 4)
eta.2 = function(x, theta.2)
theta.2[1] + theta.2[2] * x + theta.2[3] * (x ^ 2)
eta <- list(eta.1, eta.2)
#List of fixed parameters
theta.1 <- c(1,1,1,1,1)
theta.2 <- c(1,1,1)
theta.fix <- list(theta.1, theta.2)
#Comparison table
p <- matrix(
c(
0, 1,
0, 0
), c(length(eta), length(eta)), byrow = TRUE)
x <- seq(-1, 1, 0.1)
opt.1 <- list(method = 1, max.iter = 1)
opt.2 <- list(method = 1, max.iter = 2)
opt.3 <- list(method = 1)
res.1 <- tpopt(x = x, eta = eta, theta.fix = theta.fix, p = p, opt = opt.1)
res.2 <- tpopt(x = x, eta = eta, theta.fix = theta.fix, p = p, opt = opt.2)
res.3 <- tpopt(x = x, eta = eta, theta.fix = theta.fix, p = p, opt = opt.3)
plot(res.1)
plot(res.2)
plot(res.3)
[Package rodd version 0.2-1 Index]