rocsvm.solve {rocsvm.path} | R Documentation |
Finding Lagrangian multipliers of ROC-SVM by Qudratic Programming
Description
Computes the Lagrangian multipliers(alpha
), which are solutions of ROC-SVM using Quadratic Programming.
Usage
rocsvm.solve(K, lambda, rho = 1, eps = 1e-08)
Arguments
K |
The kernelized matrix, i.e., K< .,. >. |
lambda |
The regularization parameter that users want in ROC-SVM model. |
rho |
A positive constant (default : 1) |
eps |
Adjustment computing errors (default : 1e-08) |
Author(s)
Seung Jun Shin, Do Hyun Kim
See Also
Examples
n <- 30
p <- 2
delta <- 1
set.seed(309)
y <- c(rep(1, n/2), rep(-1, n/2))
x <- matrix(0, n, p)
for (i in 1:n){
if (y[i] == 1) {
x[i,] <- rnorm(p, -delta, 1)
} else {
x[i,] <- rnorm(p, delta, 1)
}
}
K <- radial.kernel(x,x)
rocsvm.solve(K, lambda = 1, rho = 1)
[Package rocsvm.path version 0.1.0 Index]