rococo {rococo} | R Documentation |
Robust Gamma Rank Correlation Coefficient
Description
Compute the robust gamma rank correlation coefficient
Usage
rococo(x, y,
similarity=c("linear", "exp", "gauss", "epstol", "classical"),
tnorm="min", r=0, noVarReturnZero=TRUE)
Arguments
x |
a numeric vector; compulsory argument |
y |
a numeric vector; compulsory argument; |
similarity |
a character string or a character vector identifying
which type of similarity measure to use; valid values are
|
tnorm |
can be any of the following strings identifying a
standard tnorm: |
r |
numeric vector defining the tolerances to be used; if a
single value is supplied, the same value is used both for |
noVarReturnZero |
if |
Details
rococo
computes the robust gamma rank correlation
coefficient of x
and y
according to the specified
parameters (see literature for more details).
Note that rococo
only works for x
and y
being
numeric vectors, unlike the classical correlation measures implemented
in cor
which can also be computed for matrices or data
frames.
Value
Upon successful completion, the function returns the robust gamma rank correlation coefficient.
Author(s)
Martin Krone and Ulrich Bodenhofer
References
https://github.com/UBod/rococo
U. Bodenhofer and F. Klawonn (2008). Robust rank correlation coefficients on the basis of fuzzy orderings: initial steps. Mathware Soft Comput. 15(1):5-20.
U. Bodenhofer, M. Krone, and F. Klawonn (2013). Testing noisy numerical data for monotonic association. Inform. Sci. 245:21-37. DOI: doi:10.1016/j.ins.2012.11.026.
See Also
Examples
## create data
f <- function(x) ifelse(x > 0.9, x - 0.9, ifelse(x < -0.9, x + 0.9, 0))
x <- rnorm(25)
y <- f(x) + rnorm(25, sd=0.1)
## compute correlation
rococo(x, y, similarity="classical")
rococo(x, y, similarity="linear")
rococo(x, y, similarity=c("classical", "gauss"), r=c(0, 0.1))