| RococoTestResults-class {rococo} | R Documentation |
Class "RococoTestResults"
Description
S4 class for storing results of the robust rank correlation test
Objects
Objects of this class can be created by calling rococo.test.
Slots
The following slots are defined for RococoTestResults objects:
count:number of times in which the test statistic for a random shuffle exceeded the test statistic of the true data; see
rococo.test.tnorm:list identifying t-norm to use or two-argument function; see
rococo. If one of the standard choices"min","prod", or"lukasiewicz"has been used, the list has one component,namethat contains the string identifying the t-norm. If a user-defined function has been used, the list has two components:namecontains"user-defined t-norm"or thenameattribute of the function object if available anddefcontains the function object itself.input:character string describing the input for which
rococo.testhas been called.length:number of samples for which
rococo.testhas been called.p.value:p-value of test.
p.value.approx:p-value as based on a normal approximation of the null distribution.
r.values:vector containing tolerance levels for the two inputs; see
rococo.testorrococo.numtests:number of (random) shuffles performed by
rococo.test.exact:logical indicating whether p-value has been computed exactly; see
rococo.test.similarity:character (vector) identifying the similarity measure(s) used by
rococo.test.sample.gamma:test statistic (robust gamma rank correlation coefficient) determined by
rococo.test.H0gamma.mu:empirical mean of test statistic for random shuffles
H0gamma.sd:empirical standard deviation of test statistic for random shuffles
perm.gamma:in case
rococo.testwas called withstoreValues=TRUE, this slot contains the vector of test statistics for random shuffles.alternative:alternative hypothesis used by
rococo.test.
Methods
- show
signature(object = "RococoTestResults"): d displays the most important information stored inobject
Author(s)
Martin Krone and Ulrich Bodenhofer
References
https://github.com/UBod/rococo
U. Bodenhofer, M. Krone, and F. Klawonn (2013). Testing noisy numerical data for monotonic association. Inform. Sci. 245:21-37. DOI: doi:10.1016/j.ins.2012.11.026.
U. Bodenhofer and F. Klawonn (2008). Robust rank correlation coefficients on the basis of fuzzy orderings: initial steps. Mathware Soft Comput. 15(1):5-20.
See Also
rococo.test, rococo,
show-methods
Examples
## create data
f <- function(x) ifelse(x > 0.9, x - 0.9, ifelse(x < -0.9, x + 0.9, 0))
x <- rnorm(25)
y <- f(x) + rnorm(25, sd=0.1)
## perform correlation tests
ret <- rococo.test(x, y, similarity="classical", alternative="greater")
show(ret)
ret <- rococo.test(x, y, similarity="linear", alternative="greater")
show(ret)
ret <- rococo.test(x, y, similarity=c("classical", "gauss"),
r=c(0, 0.1), alternative="greater",
numtests=10000)
show(ret)