pair.wmw.test {robustrank} | R Documentation |
WMW test for paired data
Description
Performs a WMW-type test of the strong null for paired data.
Usage
pair.wmw.test(X, Y, alternative = c("two.sided", "less", "greater"),
correct = TRUE, perm = NULL, mc.rep = 10000, method =
c("exact.2", "large.0", "large", "exact", "exact.0",
"exact.1", "exact.3"), verbose = FALSE, mode =
c("test", "var"), p.method = NULL, useC = TRUE)
Arguments
X |
Sample 1. |
Y |
Sample 2. |
alternative |
Alternative hypothesis. |
correct |
Whether to apply continuity correction. |
perm |
Whether to use permutation distribution or normal approximation to find p-value. See details. |
mc.rep |
Number of Monte Carlo replicates for permutation test. |
method |
Choices of test statistics. |
verbose |
Print debug message when positive. |
mode |
For development used. |
useC |
For development used. |
p.method |
Method for obtaining p values. |
Details
When perm is NULL, if (min(m,n)>=20) normal approximatino is used to find p value, otherwise permutation test is used. When permutation test is used, if the number of possible permutations is less than mc.rep, a test statistic is computed for all permutations; otherwise, Monte Carlo is done.
Value
P value for now.
References
Under prep.
Examples
dat=sim.partially.matched(m=15,n.x=0,n.y=20,distr="mixnormal",params=c(p.1=0.3,p.2=0.3),seed=1)
X=dat$X; Y=dat$Y
pair.wmw.test(X, Y, perm=TRUE, method="large.0", verbose=1)
pair.wmw.test(X, Y, perm=FALSE, method="large.0", verbose=1)