rmeta {robustmeta} | R Documentation |
Robust estimation for meta-analysis with influential outlying studies
Description
Implementing the robust inference for meta-analysis involving influential outlying studies based on the density power divergence.
Usage
rmeta(y, v, model="RE", gamma=0.01)
Arguments
y |
A vector of the outcome measure estimates (e.g., MD, SMD, log OR, log RR, log HR, RD) |
v |
A vector of the variance estimate of |
model |
Type of the pooling model; |
gamma |
Unit of grid search to explore the optimal value of tuning parameter |
Value
Results of the robust inference for meta-analysis.
-
mu
: Estimate of the common effect (for the fixed-effect model) or the grand mean (for the random-effects model). -
se
: Standard error estimate ofmu
. -
CI
: 95 percent confidence interval ofmu
. -
P
: P-value of the hypothesis test ofmu=0
. -
alpha
: Selectedalpha
by the Hyvarinen score. -
W
: Contribution rates of individual studies (ui
: contribution rates of the conventional methods,wi
: contribution rates of the robust methods).
References
Noma, H., Sugasawa, S. and Furukawa, T. A. (2022). Robust inference methods for meta-analysis involving influential outlying studies. In Preparation.
Basu, A., Harris, I. R., Hjort, N. L., Jones, M. C. (1998). Robust and efficient estimation by minimizing a density power divergence. Biometrika. 85: 549-559.
Sugasawa, S. and Yonekura, S. (2021). On selection criteria for the tuning parameter in robust divergence. Entropy. 23: 1147.
Examples
require(metafor)
data(clbp)
edat1 <- escalc(measure="SMD",m1i=m1,m2i=m2,sd1i=s1,sd2i=s2,n1i=n1,n2i=n2,data=clbp)
DL1 <- rma(yi, vi, data=edat1, method="DL")
print(DL1) # ordinary DerSimonian-Laird method
plot(DL1) # plots of influential statistics, etc.
###
y <- as.numeric(edat1$yi) # definition of summary statistics
v <- edat1$vi
rmeta(y,v) # robust inference based on the random-effects model
rmeta(y,v,model="FE") # robust inference based on the fixed-effect model