fitDatasets_lmer {robustlmm} | R Documentation |
Fitting Functions
Description
Methods to fit various mixed effects estimators to all generated datasets.
Usage
fitDatasets_lmer(datasets, control, label, postFit, datasetIndices = "all")
fitDatasets_lmer_bobyqa(datasets, postFit, datasetIndices = "all")
fitDatasets_lmer_Nelder_Mead(datasets, postFit, datasetIndices = "all")
fitDatasets_rlmer(
datasets,
method,
tuningParameter,
label,
postFit,
datasetIndices = "all",
...,
init
)
fitDatasets_rlmer_DAStau(datasets, postFit, datasetIndices = "all")
fitDatasets_rlmer_DAStau_lmerNoFit(datasets, postFit, datasetIndices = "all")
fitDatasets_rlmer_DASvar(datasets, postFit, datasetIndices = "all")
fitDatasets_rlmer_DAStau_noAdj(datasets, postFit, datasetIndices = "all")
fitDatasets_rlmer_DAStau_k_0_5(datasets, postFit, datasetIndices = "all")
fitDatasets_rlmer_DAStau_k_0_5_noAdj(datasets, postFit, datasetIndices = "all")
fitDatasets_rlmer_DAStau_k_2(datasets, postFit, datasetIndices = "all")
fitDatasets_rlmer_DAStau_k_2_noAdj(datasets, postFit, datasetIndices = "all")
fitDatasets_rlmer_DAStau_k_5(datasets, postFit, datasetIndices = "all")
fitDatasets_rlmer_DAStau_k_5_noAdj(datasets, postFit, datasetIndices = "all")
fitDatasets_heavyLme(datasets, postFit, datasetIndices = "all")
fitDatasets_lqmm(datasets, postFit, datasetIndices = "all")
fitDatasets_rlme(datasets, postFit, datasetIndices = "all")
fitDatasets_varComprob(
datasets,
control,
label,
postFit,
datasetIndices = "all"
)
fitDatasets_varComprob_compositeTau(datasets, postFit, datasetIndices = "all")
fitDatasets_varComprob_compositeTau_OGK(
datasets,
postFit,
datasetIndices = "all"
)
fitDatasets_varComprob_compositeTau_2SGS(
datasets,
postFit,
datasetIndices = "all"
)
fitDatasets_varComprob_compositeS(datasets, postFit, datasetIndices = "all")
fitDatasets_varComprob_compositeS_OGK(
datasets,
postFit,
datasetIndices = "all"
)
fitDatasets_varComprob_compositeS_2SGS(
datasets,
postFit,
datasetIndices = "all"
)
fitDatasets_varComprob_S(datasets, postFit, datasetIndices = "all")
fitDatasets_varComprob_S_OGK(datasets, postFit, datasetIndices = "all")
fitDatasets_varComprob_S_2SGS(datasets, postFit, datasetIndices = "all")
Arguments
datasets |
Datasets list to be used to generate datasets. |
control |
a list (of correct class for the respective fitting function) containing control parameters to be passed through. |
label |
a string used to identify which fits have been created by which function. |
postFit |
a function, taking one argument, the resulting fit. This makes it easy to add an additional step after fitting. |
datasetIndices |
optional vector of dataset indices to fit, useful to try only a few datasets instead of all of them. |
method |
argument passed on to |
tuningParameter |
argument passed on to
|
... |
argument passed on to |
init |
optional argument passed on to |
Details
Existing fitting functions are:
fitDatasets_lmer
: Fits datasets using lmer
using its default options.
fitDatasets_lmer_bobyqa
: Fits datasets using lmer
using
the bobyqa
optimizer.
fitDatasets_lmer_Nelder_Mead
: Fits datasets using
lmer
using the Nelder Mead
optimizer.
fitDatasets_rlmer
: Fits datasets using rlmer
using a custom configuration. The argument 'tuningParameter' is passed to
extractTuningParameter
, details are documented there.
fitDatasets_rlmer_DAStau
: Fits datasets using
rlmer
using method DAStau and smoothPsi
for
the rho functions. The tuning parameters are k = 1.345 for rho.e
.
For rho.sigma.e
, the Proposal 2 variant is used using k = 2.28.
The choices for rho.b
and rho.sigma.b
depend on whether the
model uses a diagonal or a block diagonal matrix for Lambda. In the former
case, the same psi functions and tuning parameters are use as for
rho.e
and rho.sigma.b
. In the block diagonal case,
rho.b
and rho.sigma.b
both use smoothPsi
using
a tuning parameter k = 5.14 (assuming blocks of dimension 2).
fitDatasets_rlmer_DAStau_lmerNoFit
: Fits datasets using
rlmer
using the same configuration as
fitDatasets_rlmer_DAStau
except for that it is using
lmerNoFit
as initial estimator.
fitDatasets_rlmer_DASvar
: Fits datasets using
rlmer
using method DASvar. The same rho functions and tuning
parameters are used as for fitDatasets_rlmer_DAStau
.
fitDatasets_rlmer_DAStau_noAdj
: Fits datasets using
rlmer
using method DAStau. The same rho functions and tuning
parameters are used as for fitDatasets_rlmer_DAStau
, except for
rho.sigma.e
(and rho.sigma.b
in the diagonal case) for which
the Proposal 2 variant of smoothPsi
using k = 1.345 is used.
fitDatasets_rlmer_DAStau_k_0_5
: Fits datasets using
rlmer
using method DAStau. Use smoothPsi
psi-function with tuning parameter k = 0.5
for rho.e
and
k = 1.47
for rho.sigma.e
, the latter adjusted to reach the
same asymptotic efficiency. In the diagonal case, the same are used for
rho.b
and rho.sigma.b
as well. In the block-diagonal case,
the tuning parameter k = 2.17
is used for rho.b
and
rho.sigma.b
. The tuning parameter is chosen to reach about the same
asymptotic efficiency for theta as for the fixed effects.
fitDatasets_rlmer_DAStau_k_0_5_noAdj
: Fits datasets using
rlmer
using method DAStau. Use smoothPsi
psi-function with tuning parameter k = 0.5
for rho.e
and
rho.sigma.e
. In the diagonal case, the same are used for
rho.b
and rho.sigma.b
as well. In the block-diagonal case,
the tuning parameter k = 2.17
is used for rho.b
and
rho.sigma.b
. The tuning parameter is chosen to reach about the same
asymptotic efficiency for theta as for the fixed effects.
fitDatasets_rlmer_DAStau_k_2
: Fits datasets using
rlmer
using method DAStau. Use smoothPsi
psi-function with tuning parameter k = 2
for rho.e
and
k = 2.9
rho.sigma.e
, the latter adjusted to reach the same
asymptotic efficiency. In the diagonal case, the same are used for
rho.b
and rho.sigma.b
as well. In the block-diagonal case,
the tuning parameter k = 8.44
is used for rho.b
and
rho.sigma.b
. The tuning parameter is chosen to reach about the same
asymptotic efficiency for theta as for the fixed effects.
fitDatasets_rlmer_DAStau_k_2_noAdj
: Fits datasets using
rlmer
using method DAStau. Use smoothPsi
psi-function with tuning parameter k = 2
for rho.e
and
rho.sigma.e
. In the diagonal case, the same are used for
rho.b
and rho.sigma.b
as well. In the block-diagonal case,
the tuning parameter k = 8.44
is used for rho.b
and
rho.sigma.b
. The tuning parameter is chosen to reach about the same
asymptotic efficiency for theta as for the fixed effects.
fitDatasets_rlmer_DAStau_k_5
: Fits datasets using
rlmer
using method DAStau. Use smoothPsi
psi-function with tuning parameter k = 5
for rho.e
and
k = 5.03
rho.sigma.e
, the latter adjusted to reach the same
asymptotic efficiency. In the diagonal case, the same are used for
rho.b
and rho.sigma.b
as well. In the block-diagonal case,
the tuning parameter k = 34.21
is used for rho.b
and
rho.sigma.b
. The tuning parameter is chosen to reach about the same
asymptotic efficiency for theta as for the fixed effects.
fitDatasets_rlmer_DAStau_k_5_noAdj
: Fits datasets using
rlmer
using method DAStau. Use smoothPsi
psi-function with tuning parameter k = 5
for rho.e
and
rho.sigma.e
. In the diagonal case, the same are used for
rho.b
and rho.sigma.b
as well. In the block-diagonal case,
the tuning parameter k = 34.21
is used for rho.b
and
rho.sigma.b
. The tuning parameter is chosen to reach about the same
asymptotic efficiency for theta as for the fixed effects.
fitDatasets_heavyLme
: Fits datasets using
heavyLme
from package heavy
. Additional
required arguments are: lmeFormula
, heavyLmeRandom
and
heavyLmeGroups
. They are passed to the formula
,
random
and groups
arguments of heavyLme
.
fitDatasets_lqmm
: Fits datasets using
lqmm
from package lqmm
. Additional required
arguments are: lmeFormula
, lqmmRandom
, lqmmGroup
and
lqmmCovariance
. They are passed to the formula
,
random
, groups
and covariance
arguments of
lqmm
. lqmmCovariance
is optional, if omitted pdDiag
is used.
fitDatasets_rlme
: Fits datasets using
rlme
from package rlme
.
fitDatasets_varComprob
: Prototype method to fit datasets
using varComprob
from package
robustvarComp
. Additional required items in datasets
are:
lmeFormula
, groups
, varcov
and lower
. They are
passed to the fixed
, groups
, varcov
and lower
arguments of varComprob
. The running of this method produces many
warnings of the form "passing a char vector to .Fortran is not portable"
which are suppressed.
fitDatasets_varComprob_compositeTau
: Fits datasets with the
composite Tau method using varComprob
from
package robustvarComp
. See fitDatasets_varComprob
for
additional details.
fitDatasets_varComprob_compositeTau_OGK
: Similar to
fitDatasets_varComprob_compositeTau
but using covOGK
as initial
covariance matrix estimator.
fitDatasets_varComprob_compositeTau_2SGS
: Similar to
fitDatasets_varComprob_compositeTau
but using 2SGS
as initial covariance
matrix estimator.
fitDatasets_varComprob_compositeS
: Similar to
fitDatasets_varComprob_compositeTau
but using method composite S.
fitDatasets_varComprob_compositeS_OGK
: Similar to
fitDatasets_varComprob_compositeS
but using covOGK
as
initial covariance matrix estimator.
fitDatasets_varComprob_compositeS_2SGS
: Similar to
fitDatasets_varComprob_compositeS
but using 2SGS
as initial
covariance matrix estimator.
fitDatasets_varComprob_S
: Similar to
fitDatasets_varComprob_compositeTau
but using method S and the
Rocke psi-function.
fitDatasets_varComprob_S_OGK
: Similar to
fitDatasets_varComprob_S
but using covOGK
as initial
covariance matrix estimator.
fitDatasets_varComprob_S_2SGS
: Similar to
fitDatasets_varComprob_S
but using 2SGS
as initial
covariance matrix estimator.
Value
list of fitted models. See also lapplyDatasets
which
is called internally.
Author(s)
Manuel Koller
Examples
set.seed(1)
oneWay <- generateAnovaDatasets(1, 1, 10, 4,
lmeFormula = y ~ 1,
heavyLmeRandom = ~ 1,
heavyLmeGroups = ~ Var2,
lqmmRandom = ~ 1,
lqmmGroup = "Var2",
groups = cbind(rep(1:4, each = 10), rep(1:10, 4)),
varcov = matrix(1, 4, 4),
lower = 0)
fitDatasets_lmer(oneWay)
## call rlmer with custom arguments
fitDatasets_rlmer_custom <- function(datasets) {
return(fitDatasets_rlmer(datasets,
method = "DASvar",
tuningParameter = c(1.345, 2.28, 1.345, 2.28, 5.14, 5.14),
label = "fitDatasets_rlmer_custom"))
}
fitDatasets_rlmer_custom(oneWay)