cvglasso {robustcov} | R Documentation |
Cross validation to chose tuning parameter of glasso
Description
This routine use k fold cross validation to chose tuning parameter
Usage
cvglasso(
data,
k = 10,
covest = cov,
rhos = seq(0.1, 1, 0.1),
evaluation = negLLrobOmega,
...
)
Arguments
data |
The full dataset, should be a matrix or a data.frame, row as sample |
k |
number of folds |
covest |
a *function* or name of a function (string) that takes a matrix to estimate covariance |
rhos |
a vector of tuning parameter to be tested |
evaluation |
a *function* or name of a function (string) that takes only two arguments, the estimated covariance and the test covariance, when NULL, we use negative log likelihood on test sets |
... |
extra arguments send to glasso |
Value
a matrix with k rows, each row is the evaluation loss of that fold
Examples
cvglasso(matrix(rnorm(100),20,5))
[Package robustcov version 0.1 Index]