plotenvelope {robustbetareg} | R Documentation |
Normal Probability Plots of Residuals with Simulated Envelope for robustbetareg Objects
Description
plotenvelope
is used to display normal probability plots of residuals
with simulated envelope for the robust beta regression. Currently, eight types of
residuals are supported: sweighted2, pearson, weighted, sweighted,
sweighted.gamma, sweighted2.gamma, combined, and combined.projection residuals.
Usage
plotenvelope(
object,
type = c("sweighted2", "pearson", "weighted", "sweighted", "sweighted.gamma",
"sweighted2.gamma", "combined", "combined.projection"),
conf = 0.95,
n.sim = 100,
PrgBar = TRUE,
control = robustbetareg.control(...),
...
)
Arguments
object |
fitted model object of class |
type |
character indicating the type of residuals to be used, see
|
conf |
numeric specifying the confidence level of the simulated
envelopes. Default is |
n.sim |
a positive integer representing the number of iterations
to generate the simulated envelopes. Default is |
PrgBar |
logical. If |
control |
a list of control arguments specified via
|
... |
arguments passed to |
Details
The plotenvelope
creates normal probability plots with simulated
envelope (see Atkinson (1985) for details). Under the correct model,
approximately 100*conf of the residuals are expected to be inside the
envelope.
Value
plotenvelope
returns normal probability plot of residuals with simulated
envelope.
Author(s)
Yuri S. Maluf (yurimaluf@gmail.com), Francisco F. Queiroz (ffelipeq@outlook.com) and Silvia L. P. Ferrari.
References
Maluf, Y.S., Ferrari, S.L.P., and Queiroz, F.F. (2022). Robust
beta regression through the logit transformation. arXiv:2209.11315.
Atkinson, A.C. (1985) Plots, transformations and regression: an
introduction to graphical methods of diagnostic regression analysis.
Oxford Science Publications, Oxford.
See Also
robustbetareg
, robustbetareg.control
,
residuals.robustbetareg
Examples
get(data("HIC", package = "robustbetareg"))
hic <- robustbetareg(HIC ~ URB + GDP | GDP,
data = HIC, alpha = 0.06)
plotenvelope(hic, n.sim = 50)
get(data("Firm", package = "robustbetareg"))
rmc <- robustbetareg(FIRMCOST ~ INDCOST + SIZELOG | INDCOST + SIZELOG, data = Firm)
plotenvelope(rmc, conf = 0.90)