EGB {robustbetareg} | R Documentation |
The Exponential Generalized Beta of the Second Type Distribution
Description
Density, distribution function, quantile function and random generation for exponential generalized beta of the second type distribution.
Usage
dEGB(y_star, mu, phi, log = FALSE)
pEGB(q, mu, phi)
qEGB(p, mu, phi)
rEGB(n, mu, phi)
Arguments
y_star , q |
vector of quantiles. |
mu |
mu parameter. |
phi |
phi parameter. |
log |
logical; if |
p |
vector of probabilities. |
n |
number of observations. If |
Details
The EGB distribution with parameters mu =
\mu
and
phi =
\phi
has density
f(y^\star;\mu,\phi)=
B^{-1}(\mu\phi,(1-\mu)\phi) \exp\{-y^\star(1-\mu)\phi\}/ (1+\exp\{-y^\star\})^{\phi},
with \mu\in(0,1),\phi>0
and y^\star \in (-\infty, \infty)
. For this
distribution, E(y^\star)=\psi(\mu\phi)-\psi((1-\mu)\phi)
and
Var(y^\star)=\psi'(\mu\phi)+\psi'((1-\mu)\phi)
, where \psi
is the digamma function. See Kerman and McDonald (2015) for additional
details. If y \sim beta(\mu, \phi)
, with \mu
and
\phi
representing the mean and precision of y
, then
y^\star = \log(y/(1-y)) \sim EGB(\mu, \phi)
with the density
given above.
Value
dEGB
gives the density, pEGB
gives the distribution function,
qEGB
gives the quantile function, and rEGB
generates random
variables.
Author(s)
Yuri S. Maluf (yurimaluf@gmail.com), Francisco F. Queiroz (ffelipeq@outlook.com) and Silvia L. P. Ferrari.
References
Maluf, Y.S., Ferrari, S.L.P., and Queiroz, F.F. (2022). Robust
beta regression through the logit transformation. arXiv:2209.11315.
Kerman, S. and McDonald, J.B. (2015). Skewness-kurtosis bounds for EGB1, EGB2,
and special cases. Communications in Statistics - Theory and Methods,
44:3857-3864.
Examples
dEGB(0.2, mu = 0.3, phi = 1)
mu = 0.2; phi = 2;
set.seed(1)
EGBsample = rEGB(1000, mu, phi)
hist(EGBsample, prob = TRUE, breaks = 15, main = "", las = 1, ylim = c(0, 0.2),
xlim = c(-20, 10))
curve(dEGB(x, mu, phi), from = -20, to = 8, add = TRUE, col = "red")
# Showing the P(Y* < -5) = 0.17, where Y* ~ EGB(0.2, 2).
x = seq(-20, 10,0.01)
y = dEGB(x, mu, phi)
plot(x, y, type = "l", lwd = 2, las = 1)
x1 = seq(-20, -5, 0.01)
y1 = dEGB(x1, mu, phi)
polygon(c(x1, -5, -5), c(y1, 0, 0), col = "lightblue")
plot(x, pEGB(x, mu, phi), type = "l", las = 1, lwd = 2,
ylab = expression(P("Y*"<y)), xlab = "y")
p = pEGB(0, mu, phi)
q = qEGB(p, mu, phi)
points(q, p, pch = 16, col = 2, cex = 1.5)
text(2, 0.83, paste("(", 0, ",", round(p, 2), ")"), font = 2,
cex = 0.8, col = "red")