robslope {robslopes} | R Documentation |
Robust slope estimator
Description
Computes the Theil-Sen median slope, Siegel's repeated median slope or te equivariant Passing-Bablok slope. The algorithms run in an expected linearithmic time while requiring O(n)
storage. They are based on Dillencourt et. al (1992), Matousek et. al (1998) and Raymaekers and Dufey (2022).
Usage
robslope(formula, data, subset, weights, na.action,
type = c("TheilSen", "RepeatedMedian","PassingBablok"),
alpha = NULL, beta = NULL, verbose = TRUE)
Arguments
formula |
an object of class |
data |
an optional data frame, list or environment (or object
coercible by |
subset |
an optional vector specifying a subset of observations to be used in the fitting process. |
weights |
an optional vector of weights to be used in the fitting process. Currently not supported. |
na.action |
a function which indicates what should happen
when the data contain |
type |
the type of robust slope estimator. Should be one of |
alpha |
Determines the order statistic of the target slope. Defaults to the upper median. See below for details. |
beta |
Determines the inner order statistic. Only used when |
verbose |
Whether or not to print out the progress of the algorithm. Defaults to |
Details
This function provides a wrapper around robslope.fit
, which in turn calls the individual functions TheilSen
, RepeatedMedian
or PassingBablok
. The details on changing the parameters alpha
and beta
can be found in the documentation of those respective functions.
Value
robslope
returns an object of class
"lm"
.
The generic accessor functions coefficients
,
fitted.values
and residuals
extract
various useful features of the value returned by lm
.
Author(s)
Jakob Raymaekers
References
Theil, H. (1950), A rank-invariant method of linear and polynomial regression analysis (Parts 1-3), Ned. Akad. Wetensch. Proc. Ser. A, 53, 386-392, 521-525, 1397-1412.
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324), 1379-1389.
Dillencourt, M. B., Mount, D. M., & Netanyahu, N. S. (1992). A randomized algorithm for slope selection. International Journal of Computational Geometry & Applications, 2(01), 1-27.
Siegel, A. F. (1982). Robust regression using repeated medians. Biometrika, 69(1), 242-244.
Matousek, J., Mount, D. M., & Netanyahu, N. S. (1998). Efficient randomized algorithms for the repeated median line estimator. Algorithmica, 20(2), 136-150.
Passing, H., Bablok, W. (1983). A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry, Part I, Journal of clinical chemistry and clinical biochemistry, 21,709-720.
Bablok, W., Passing, H., Bender, R., Schneider, B. (1988). A general regression procedure for method transformation. Application of linear regression procedures for method comparison studies in clinical chemistry, Part III. Journal of clinical chemistry and clinical biochemistry, 26,783-790.
Raymaekers J., Dufey F. (2022). Equivariant Passing-Bablok regression in quasilinear time. (link to open access pdf)
Raymaekers (2023). "The R Journal: robslopes: Efficient Computation of the (Repeated) Median Slope", The R Journal. (link to open access pdf)
See Also
robslope.fit
TheilSen
RepeatedMedian
PassingBablok
Examples
set.seed(123)
df <- data.frame(cbind(rnorm(20), rnorm(20)))
colnames(df) <- c("x", "y")
robslope.out <- robslope(y~x, data = df,
type = "RepeatedMedian", verbose = TRUE)
coef(robslope.out)
plot(fitted.values(robslope.out))
robslope.out <- robslope(y~x, data = df,
type = "TheilSen", verbose = TRUE)
plot(residuals(robslope.out))