robregcc_option {robregcc} | R Documentation |
Control parameter for model estimation:
Description
The model approach use scaled lasoo approach for model selection.
Usage
robregcc_option(
maxiter = 10000,
tol = 1e-10,
nlam = 100,
out.tol = 1e-08,
lminfac = 1e-08,
lmaxfac = 10,
mu = 1,
nu = 1.05,
sp = 0.3,
gamma = 2,
outMiter = 3000,
inMiter = 500,
kmaxS = 500,
tolS = 1e-04,
nlamx = 20,
nlamy = 20,
spb = 0.3,
spy = 0.3,
lminfacX = 1e-06,
lminfacY = 0.01,
kfold = 10,
fullpath = 0,
sigmafac = 2
)
Arguments
maxiter |
maximum number of iteration for convergence |
tol |
tolerance value set for convergence |
nlam |
number of lambda to be genrated to obtain solution path |
out.tol |
tolernce value set for convergence of outer loop |
lminfac |
a multiplier of determing lambda_min as a fraction of lambda_max |
lmaxfac |
a multiplier of lambda_max |
mu |
penalty parameter used in enforcing orthogonality |
nu |
penalty parameter used in enforcing orthogonality (incremental rate of mu) |
sp |
maximum proportion of nonzero elements in shift parameter |
gamma |
adaptive penalty weight exponential factor |
outMiter |
maximum number of outer loop iteration |
inMiter |
maximum number of inner loop iteration |
kmaxS |
maximum number of iteration for fast S estimator for convergence |
tolS |
tolerance value set for convergence in case of fast S estimator |
nlamx |
number of x lambda |
nlamy |
number of y lambda |
spb |
sparsity in beta |
spy |
sparsity in shift gamma |
lminfacX |
a multiplier of determing lambda_min as a fraction of lambda_max for sparsity in X |
lminfacY |
a multiplier of determing lambda_min as a fraction of lambda_max for sparsity in shift parameter |
kfold |
nummber of folds for crossvalidation |
fullpath |
1/0 to get full path yes/no |
sigmafac |
multiplying factor for the range of standard deviation |
Value
a list of controling parameter.
Examples
# default options
library(robregcc)
control_default = robregcc_option()
# manual options
control_manual <- robregcc_option(maxiter=1000,tol = 1e-4,lminfac = 1e-7)