residuals {robregcc} | R Documentation |
Extract residuals estimate from the sparse version of the robregcc fitted object.
Description
Robust residuals estimate
Usage
## S3 method for class 'robregcc'
residuals(object, ...)
Arguments
object |
robregcc fitted onject |
... |
Other argumnts for future usage. |
Value
residuals estimate
Examples
library(magrittr)
library(robregcc)
data(simulate_robregcc)
X <- simulate_robregcc$X;
y <- simulate_robregcc$y
C <- simulate_robregcc$C
n <- nrow(X); p <- ncol(X); k <- nrow(C)
Xt <- cbind(1,X) # accounting for intercept in predictor
C <- cbind(0,C) # accounting for intercept in constraint
bw <- c(0,rep(1,p)) # weight matrix to not penalize intercept
example_seed <- 2*p+1
set.seed(example_seed)
# Breakdown point for tukey Bisquare loss function
b1 = 0.5 # 50% breakdown point
cc1 = 1.567 # corresponding model parameter
b1 = 0.25; cc1 = 2.937
# Initialization [PSC analysis for compositional data]
control <- robregcc_option(maxiter=1000,tol = 1e-4,lminfac = 1e-7)
fit.init <- cpsc_sp(Xt, y,alp = 0.4, cfac = 2, b1 = b1,
cc1 = cc1,C,bw,1,control)
## Robust model fitting
# control parameters
control <- robregcc_option()
beta.wt <- fit.init$betaR # Set weight for model parameter beta
beta.wt[1] <- 0
control$gamma = 1 # gamma for constructing weighted penalty
control$spb = 40/p # fraction of maximum non-zero model parameter beta
control$outMiter = 1000 # Outer loop iteration
control$inMiter = 3000 # Inner loop iteration
control$nlam = 50 # Number of tuning parameter lambda to be explored
control$lmaxfac = 1 # Parameter for constructing sequence of lambda
control$lminfac = 1e-8 # Parameter for constructing sequence of lambda
control$tol = 1e-20; # tolrence parameter for converging [inner loop]
control$out.tol = 1e-16 # tolerence parameter for convergence [outer loop]
control$kfold = 10 # number of fold of crossvalidation
control$sigmafac = 2#1.345
# Robust regression using adaptive lasso penalty
fit.ada <- robregcc_sp(Xt,y,C,
beta.init = beta.wt, cindex = 1,
gamma.init = fit.init$residuals,
control = control,
penalty.index = 1, alpha = 0.95)
# Robust regression using lasso penalty [Huber equivalent]
fit.soft <- robregcc_sp(Xt,y,C, cindex = 1,
control = control, penalty.index = 2,
alpha = 0.95)
# Robust regression using hard thresholding penalty
control$lmaxfac = 1e2 # Parameter for constructing sequence of lambda
control$lminfac = 1e-3 # Parameter for constructing sequence of lambda
control$sigmafac = 2#1.345
fit.hard <- robregcc_sp(Xt,y,C, beta.init = fit.init$betaf,
gamma.init = fit.init$residuals,
cindex = 1,
control = control, penalty.index = 3,
alpha = 0.95)
residuals(fit.ada)
residuals(fit.soft)
residuals(fit.hard)
[Package robregcc version 1.1 Index]