| classo_path {robregcc} | R Documentation | 
Compute solution path of constrained lasso.
Description
The model uses scaled lasoo approach for model selection.
Usage
classo_path(Xt, y, C, we = NULL, control = list())
Arguments
| Xt | CLR transformed predictor matrix. | 
| y | model response vector | 
| C | sub-compositional matrix | 
| we | specify weight of model parameter | 
| control | a list of internal parameters controlling the model fitting | 
Value
| betapath | solution path estimate | 
| beta | model parameter estimate | 
Examples
library(robregcc)
library(magrittr)
data(simulate_robregcc)
X <- simulate_robregcc$X;
y <- simulate_robregcc$y
C <- simulate_robregcc$C
n <- nrow(X); p <- ncol(X); k <-  nrow(C)
#
Xt <- cbind(1,X)                         # accounting for intercept in predictor
C <- cbind(0,C)                           # accounting for intercept in constraint
bw <- c(0,rep(1,p))                       # weight matrix to not penalize intercept 
# Non-robust regression
control <- robregcc_option(maxiter = 5000, tol = 1e-7, lminfac = 1e-12)
fit.path <- classo_path(Xt, y, C, we = bw, control = control)
[Package robregcc version 1.1 Index]