reg_control {robmed} | R Documentation |
Tuning parameters for MM-regression
Description
Obtain a list with tuning paramters for lmrob()
.
Usage
reg_control(efficiency = 0.85, max_iterations = 200, tol = 1e-07, seed = NULL)
Arguments
efficiency |
a numeric value giving the desired efficiency (defaults to 0.85 for 85% efficiency). |
max_iterations |
an integer giving the maximum number of iterations in various parts of the algorithm. |
tol |
a small positive numeric value to be used to determine convergence in various parts of the algorithm. |
seed |
optional initial seed for the random number generator (see
|
Value
A list of tuning parameters as returned by
lmrob.control()
.
Note
This is a simplified wrapper function for
lmrob.control()
, as the latter requires detailed
knowledge of the MM-type regression algorithm. Currently only 95%, 90%,
85% (the default) and 80% efficiency are supported. For other values,
please specify the corresponding tuning parameters in
lmrob.control()
directly.
Author(s)
Andreas Alfons
References
Salibian-Barrera, M. and Yohai, V.J. (2006) A Fast Algorithm for S-regression Estimates. Journal of Computational and Graphical Statistics, 15(2), 414–427. doi:10.1198/106186006x113629.
Yohai, V.J. (1987) High Breakdown-Point and High Efficiency Estimates for Regression. The Annals of Statistics, 15(20), 642–656. doi:10.1214/aos/1176350366.
See Also
lmrob()
,
lmrob.control()
Examples
data("BSG2014")
# run fast-and-robust bootstrap test
ctrl <- reg_control(efficiency = 0.95)
boot <- test_mediation(BSG2014,
x = "ValueDiversity",
y = "TeamCommitment",
m = "TaskConflict",
control = ctrl)
summary(boot)