cov_ML {robmed} | R Documentation |
Maximum likelihood estimator of mean vector and covariance matrix
Description
Compute the maximum likelihood estimator of the mean vector and the covariance matrix.
Usage
cov_ML(x, ...)
Arguments
x |
a numeric matrix or data frame. |
... |
additional arguments are currently ignored. |
Value
An object of class "cov_ML"
with the following components:
center |
a numeric vector containing the mean vector estimate. |
cov |
a numeric matrix containing the covariance matrix estimate. |
n |
an integer giving the number of observations. |
Author(s)
Andreas Alfons
References
Zu, J. and Yuan, K.-H. (2010) Local Influence and Robust Procedures for Mediation Analysis. Multivariate Behavioral Research, 45(1), 1–44. doi:10.1080/00273170903504695.
See Also
test_mediation()
, fit_mediation()
Examples
data("BSG2014")
# define variables
x <- "ValueDiversity"
y <- "TeamCommitment"
m <- "TaskConflict"
# compute Huber M-estimator
cov_ML(BSG2014[, c(x, y, m)])
[Package robmed version 1.0.2 Index]