predict_sf_regression {robflreg} | R Documentation |
Prediction for a scalar-on-function regression model
Description
This function is used to make prediction for a new set of functional and scalar (if any) predictors based upon a fitted scalar-on-function regression model in the output of rob.sf.reg
.
Usage
predict_sf_regression(object, Xnew, Xnew.scl = NULL)
Arguments
object |
An output object obtained from |
Xnew |
A list of matrices consisting of the new observations of functional predictors. The argument |
Xnew.scl |
A matrix consisting of the new observations of scalar predictors. The argument |
Value
An n_{test} \times 1
-dimensional matrix of predicted values of the scalar response variable for the given set of new functional and scalar (if any) predictors Xnew
and Xnew.scl
, respectively. Here, n_{test}
, the number of rows of the matrix of predicted values, equals to the number of rows of Xnew
and and Xnew.scl
(if any).
Author(s)
Ufuk Beyaztas and Han Lin Shang
Examples
set.seed(2022)
sim.data <- generate.sf.data(n = 400, n.pred = 5, n.gp = 101, out.p = 0.1)
out.indx <- sim.data$out.indx
indx.test <- sample(c(1:400)[-out.indx], 120)
indx.train <- c(1:400)[-indx.test]
Y <- sim.data$Y
X <- sim.data$X
Y.train <- Y[indx.train,]
Y.test <- Y[indx.test,]
X.train <- X.test <- list()
for(i in 1:5){
X.train[[i]] <- X[[i]][indx.train,]
X.test[[i]] <- X[[i]][indx.test,]
}
gp <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs
model.tau <- rob.sf.reg(Y.train, X.train, emodel = "robust", fmodel = "tau", gp = gp)
pred.tau <- predict_sf_regression(object = model.tau, Xnew = X.test)
round(mean((Y.test - pred.tau)^2), 4) # 1.868 (tau method)