get.ff.coeffs {robflreg} | R Documentation |
Get the estimated bivariate regression coefficient functions for function-on-function regression model
Description
This function is used to obtain the estimated bivariate regression coefficient functions \beta_m(s,t)
for function-on-function regression model (see the description in rob.ff.reg
based on output object obtained from rob.ff.reg
).
Usage
get.ff.coeffs(object)
Arguments
object |
The output object of |
Details
In the estimation of bivariate regression coefficient functions, the estimated functional principal components of
response \hat{\Phi}(t)
and predictor \hat{\Psi}_m(s)
variables and the estimated regression parameter function obtained from the regression model between the principal component scores of response and predictor variables \hat{B}
are used, i.e., \hat{\beta}_m(s,t) = \hat{\Psi}_m^\top(s) \hat{B} \hat{\Phi}(t)
.
Value
A list object with the following components:
vars |
A numeric vector specifying the indices of functional predictors used in the function-on-function regression model |
gpY |
A vector containing the grid points of the functional response |
gpX |
A list with length |
coefficients |
A list with length |
Author(s)
Ufuk Beyaztas and Han Lin Shang
Examples
sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101)
Y <- sim.data$Y
X <- sim.data$X
gpY = seq(0, 1, length.out = 101) # grid points of Y
gpX <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs
model.fit <- rob.ff.reg(Y, X, model = "full", emodel = "classical",
gpY = gpY, gpX = gpX)
coefs <- get.ff.coeffs(model.fit)