robar {robcor} | R Documentation |
Robust Fit Autoregressive Models to Time Series
Description
Fit an autoregressive time series model to the data using robust algorithms.
Usage
robar(x, order = 2, scaler = "s_FastQn")
Arguments
x |
a univariate time series. |
order |
an order of model to fit. |
scaler |
location-scale estimator to use in the algorithm.
By default, |
Details
This function is a robust replacement for ar()
.
Note, that implementation and documentation is not finished/polished yet.
Value
A list of class "ar"
. For description of elements see ar()
.
Note
WORK-IN-PROGRESS status.
Author(s)
Paul Smirnov <s.paul@mail.ru>
References
Shevlyakov, G. L., Lyubomishchenko, N. S. and Smirnov, P. O. (2013). Some remarks on robust estimation of power spectra. Proceedings of the 11th International Conference on Computer Data Analysis and Modeling, Minsk, Belarus, 97–104.
Examples
n <- 100
set.seed(361)
eps <- as.ts(rnorm(n))
x <- arima.sim(list(ar=c(1,-0.9)), n, innov=eps) # basic signal
z <- as.ts(rbinom(n, 1, 0.1) * rnorm(n, sd=10)) # noise
y <- x + z
spec.ar(robar(y, order=2))
[Package robcor version 0.1-6.1 Index]