robStepSplitReg {robStepSplitReg} | R Documentation |
Robust Stepwise Split Regularized Regression
Description
robStepSplitReg
performs robust stepwise split regularized regression.
Usage
robStepSplitReg(
x,
y,
n_models = 1,
model_saturation = c("fixed", "p-value")[1],
alpha = 0.05,
model_size = NULL,
robust = TRUE,
compute_coef = FALSE,
en_alpha = 1/4
)
Arguments
x |
Design matrix. |
y |
Response vector. |
n_models |
Number of models into which the variables are split. |
model_saturation |
Criterion to determine if a model is saturated. Must be one of "fixed" (default) or "p-value". |
alpha |
P-value used to determine when the model is saturated |
model_size |
Size of the models in the ensemble. |
robust |
Argument to determine if robust measures of location, scale and correlation are used. Default is TRUE. |
compute_coef |
Argument to determine if coefficients are computed (via adaptive PENSE) for each model. Default is FALSE. |
en_alpha |
Elastic net mixing parmeter for parameters shrinkage. Default is 1/4. |
Value
An object of class robStepSplitReg.
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
coef.robStepSplitReg
, predict.robStepSplitReg
Examples
# Required library
library(mvnfast)
# Simulation parameters
n <- 50
p <- 500
rho <- 0.5
p.active <- 100
snr <- 1
contamination.prop <- 0.2
# Setting the seed
set.seed(0)
# Simulation of beta vector
true.beta <- c(runif(p.active, 0, 5)*(-1)^rbinom(p.active, 1, 0.7), rep(0, p - p.active))
# Simulation of uncontaminated data
sigma.mat <- matrix(0, nrow = p, ncol = p)
sigma.mat[1:p.active, 1:p.active] <- rho
diag(sigma.mat) <- 1
x <- mvnfast::rmvn(n, mu = rep(0, p), sigma = sigma.mat)
sigma <- as.numeric(sqrt(t(true.beta) %*% sigma.mat %*% true.beta)/sqrt(snr))
y <- x %*% true.beta + rnorm(n, 0, sigma)
# Contamination of data
contamination_indices <- 1:floor(n*contamination.prop)
k_lev <- 2
k_slo <- 100
x_train <- x
y_train <- y
beta_cont <- true.beta
beta_cont[true.beta!=0] <- beta_cont[true.beta!=0]*(1 + k_slo)
beta_cont[true.beta==0] <- k_slo*max(abs(true.beta))
for(cont_id in contamination_indices){
a <- runif(p, min = -1, max = 1)
a <- a - as.numeric((1/p)*t(a) %*% rep(1, p))
x_train[cont_id,] <- mvnfast::rmvn(1, rep(0, p), 0.1^2*diag(p)) +
k_lev * a / as.numeric(sqrt(t(a) %*% solve(sigma.mat) %*% a))
y_train[cont_id] <- t(x_train[cont_id,]) %*% beta_cont
}
# Ensemble models
ensemble_fit <- robStepSplitReg(x_train, y_train,
n_models = 5,
model_saturation = c("fixed", "p-value")[1],
alpha = 0.05, model_size = n - 1,
robust = TRUE,
compute_coef = TRUE,
en_alpha = 1/4)
# Ensemble coefficients
ensemble_coefs <- coef(ensemble_fit, group_index = 1:ensemble_fit$n_models)
sens_ensemble <- sum(which((ensemble_coefs[-1]!=0)) <= p.active)/p.active
spec_ensemble <- sum(which((ensemble_coefs[-1]!=0)) <= p.active)/sum(ensemble_coefs[-1]!=0)
# Simulation of test data
m <- 2e3
x_test <- mvnfast::rmvn(m, mu = rep(0, p), sigma = sigma.mat)
y_test <- x_test %*% true.beta + rnorm(m, 0, sigma)
# Prediction of test samples
ensemble_preds <- predict(ensemble_fit, newx = x_test,
group_index = 1:ensemble_fit$n_models,
dynamic = FALSE)
mspe_ensemble <- mean((y_test - ensemble_preds)^2)/sigma^2