multiMEI {roahd} | R Documentation |
Modified Epigraph Index for multivariate functional data
Description
These functions compute the Modified Epigraph Index of elements of a multivariate functional dataset.
Usage
multiMEI(Data, weights = "uniform")
## S3 method for class 'mfData'
multiMEI(Data, weights = "uniform")
## Default S3 method:
multiMEI(Data, weights = "uniform")
Arguments
Data |
specifies the the multivariate functional dataset.
It is either an object of class |
weights |
either a set of weights (of the same length of |
Details
Given a multivariate functional dataset composed of N
elements with
L
components each, \mathbf{X_1} =( X^1_1(t),
X^2_1(t),
\ldots, X^L_1(t))
, and a set of L
non-negative weights,
w_1, w_2, \ldots, w_L, \qquad \sum_{i=1}^L w_i = 1,
these functions compute the MEI of each element of the functional dataset, namely:
MEI( \mathbf{X_j} ) = \sum_{i=1}^{L} w_i MEI( X^i_j ), \quad \forall
j = 1, \ldots N.
Value
The function returns a vector containing the values of MEI of each element of the multivariate functional dataset.
See Also
Examples
N = 20
P = 1e3
grid = seq( 0, 10, length.out = P )
# Generating an exponential covariance function to be used to simulate gaussian
# functional data
Cov = exp_cov_function( grid, alpha = 0.2, beta = 0.8 )
# First component of the multivariate guassian functional dataset
Data_1 = generate_gauss_fdata( N, centerline = rep( 0, P ), Cov = Cov )
# First component of the multivariate guassian functional dataset
Data_2 = generate_gauss_fdata( N, centerline = rep( 0, P ), Cov = Cov )
mfD = mfData( grid, list( Data_1, Data_2 ) )
# Uniform weights
multiMEI( mfD, weights = 'uniform' )
# Non-uniform, custom weights
multiMEI( mfD, weights = c(2/3, 1/3) )