MHI {roahd} | R Documentation |
Modified Hypograph Index of univariate functional dataset
Description
This function computes the Modified Hypograph Index (MEI) of elements of a univariate functional dataset.
Usage
MHI(Data)
## S3 method for class 'fData'
MHI(Data)
## Default S3 method:
MHI(Data)
Arguments
Data |
either an |
Details
Given a univariate functional dataset, X_1(t), X_2(t), \ldots, X_N(t)
,
defined over a compact interval I=[a,b]
, this function computes the
MHI, i.e.:
MHI( X(t) ) = \frac{1}{N} \sum_{i=1}^N \tilde{\lambda}( X(t) \geq
X_i(t) ),
where \tilde{\lambda}(\cdot)
is the normalized Lebesgue measure over
I=[a,b]
, that is \tilde{\lambda(A)} = \lambda( A ) / ( b - a )
.
Value
The function returns a vector containing the values of MHI for each
element of the functional dataset provided in Data
.
References
Lopez-Pintado, S. and Romo, J. (2012). A half-region depth for functional data, Computational Statistics and Data Analysis, 55, 1679-1695.
Arribas-Gil, A., and Romo, J. (2014). Shape outlier detection and visualization for functional data: the outliergram, Biostatistics, 15(4), 603-619.
See Also
Examples
N = 20
P = 1e2
grid = seq( 0, 1, length.out = P )
C = exp_cov_function( grid, alpha = 0.2, beta = 0.3 )
Data = generate_gauss_fdata( N,
centerline = sin( 2 * pi * grid ),
C )
fD = fData( grid, Data )
MHI( fD )
MHI( Data )