MBD_relative {roahd} | R Documentation |
Relative Modified Band Depth of functions in a univariate functional dataset
Description
This function computes Modified Band Depth (BD) of elements of a univariate functional dataset with respect to another univariate functional dataset.
Usage
MBD_relative(Data_target, Data_reference)
## S3 method for class 'fData'
MBD_relative(Data_target, Data_reference)
## Default S3 method:
MBD_relative(Data_target, Data_reference)
Arguments
Data_target |
is the univariate functional dataset, provided either as
an |
Data_reference |
is the dataset, provided either as an |
Details
Given a univariate functional dataset of elements X_1(t), X_2(t),
\ldots, X_N(t)
, and another univariate functional dataset of elements
Y_1(t), Y_2(t) \ldots, Y_M(t)
, defined over the same compact interval
I=[a,b]
, this function computes the MBD of
elements of the former with respect to elements of the latter, i.e.:
MBD( X_i( t ) ) = {M \choose 2 }^{-1} \sum_{1 \leq i_1 < i_2 \leq M}
\tilde{\lambda}\big( {t : \min( Y_{i_1}(t), Y_{i_2}(t) ) \leq X_i(t) \leq
\max( Y_{i_1}(t), Y_{i_2}(t) ) } \big),
\forall i = 1, \ldots, N
, where \tilde{\lambda}(\cdot)
is the
normalized Lebesgue measure over I=[a,b]
, that is
\tilde{\lambda(A)} = \lambda( A ) / ( b - a )
.
Value
The function returns a vector containing the MBD of elements in
Data_target
with respect to elements in Data_reference
.
See Also
MBD
, BD
, BD_relative
,
fData
Examples
grid = seq( 0, 1, length.out = 1e2 )
Data_ref = matrix( c( 0 + sin( 2 * pi * grid ),
1 + sin( 2 * pi * grid ),
-1 + sin( 2 * pi * grid ) ),
nrow = 3, ncol = length( grid ), byrow = TRUE )
Data_test_1 = matrix( c( 0.6 + sin( 2 * pi * grid ) ),
nrow = 1, ncol = length( grid ), byrow = TRUE )
Data_test_2 = matrix( c( 0.6 + sin( 2 * pi * grid ) ),
nrow = length( grid ), ncol = 1, byrow = TRUE )
Data_test_3 = 0.6 + sin( 2 * pi * grid )
Data_test_4 = array( 0.6 + sin( 2 * pi * grid ), dim = length( grid ) )
Data_test_5 = array( 0.6 + sin( 2 * pi * grid ), dim = c( 1, length( grid ) ) )
Data_test_6 = array( 0.6 + sin( 2 * pi * grid ), dim = c( length( grid ), 1 ) )
Data_test_7 = matrix( c( 0.5 + sin( 2 * pi * grid ),
-0.5 + sin( 2 * pi * grid ),
1.1 + sin( 2 * pi * grid ) ),
nrow = 3, ncol = length( grid ), byrow = TRUE )
fD_ref = fData( grid, Data_ref )
fD_test_1 = fData( grid, Data_test_1 )
fD_test_2 = fData( grid, Data_test_2 )
fD_test_3 = fData( grid, Data_test_3 )
fD_test_4 = fData( grid, Data_test_4 )
fD_test_5 = fData( grid, Data_test_5 )
fD_test_6 = fData( grid, Data_test_6 )
fD_test_7 = fData( grid, Data_test_7 )
MBD_relative( fD_test_1, fD_ref )
MBD_relative( Data_test_1, Data_ref )
MBD_relative( fD_test_2, fD_ref )
MBD_relative( Data_test_2, Data_ref )
MBD_relative( fD_test_3, fD_ref )
MBD_relative( Data_test_3, Data_ref )
MBD_relative( fD_test_4, fD_ref )
MBD_relative( Data_test_4, Data_ref )
MBD_relative( fD_test_5, fD_ref )
MBD_relative( Data_test_5, Data_ref )
MBD_relative( fD_test_6, fD_ref )
MBD_relative( Data_test_6, Data_ref )
MBD_relative( fD_test_7, fD_ref )
MBD_relative( Data_test_7, Data_ref )