rmstpara {rmstBayespara} | R Documentation |
Restricted mean survival time via parametric models
Description
A function of calculating restricted mean survival time via parametric models. Exponential, Weibull, log-normal and log-logistic models are available.
Usage
rmstpara(
tau,
var,
rvar = NA,
shape = NA,
sigma = NA,
family = "exponential",
random = "fixed"
)
Arguments
tau |
A value of pre-specified evaluation time point. |
var |
A vector of covariate values. |
rvar |
a vector of frailty effects. It is necessary when log-normal frailty and log-logistic frailty models. |
shape |
a vector of shape parameters. It is necessary when Weibull and log-logistic models. |
sigma |
a vector of standard error parameters. It is necessary when log-normal model. |
family |
A description of the response distribution and link function to be used in the model. 'exponential', 'Weibull', 'log-normal', and 'log-logistic' can be selected. |
random |
A description of random effect. 'fixed', 'normal', and 'frailty' are available. |
Value
An object of class brmsfit or stanfit. See rstan and brms.
Examples
d <- data.frame(time=1:100,
status=sample(0:1, size=100, replace=TRUE),
arm=sample(c("t", "c"), size=100, replace=TRUE),
sex=sample(1:2, size=100, replace=TRUE),
district=sample(1:5, size=100, replace=TRUE)
)
head(d)
fit_x_r <- brm_surv(time="time", cnsr="1-status",
var=c("factor(arm)", "factor(sex)"),
rvar="district", data=d,
family="Weibull", random="frailty")
fit_x_r$post_sample
ps_x_r<-fit_x_r$post_sample
rmst_x_r<-rmstpara(tau=100, var=ps_x_r[,"b_intercept"]+ps_x_r[,"b_factor(arm)"],
shape=ps_x_r[,"shape"], rvar=ps_x_r[,"sd_district"],
family="Weibull",random="frailty")
rmst_x_r