cummeta {rmeta} | R Documentation |
Cumulative meta-analysis of binary data
Description
A cumulative meta-analysis plot shows how evidence has accumulated over
time. The i
th line in the cumulative meta-analysis plot is the
summary produced by a meta-analysis of the first i
trials.
Usage
cummeta(ntrt, nctrl, ptrt, pctrl, conf.level = 0.95,
names = NULL, data= NULL, subset = NULL,
na.action = na.fail,
method = c("meta.MH", "meta.DSL"),
statistic = "OR")
cummeta.summaries(effects,stderrs, conf.level = 0.95,
names = NULL,weights=NULL, data= NULL,
subset = NULL, na.action = get(getOption("na.action")),
method = c("fixed", "random"), logscale=TRUE)
## S3 method for class 'meta.cum'
plot(x, conf.level = NULL,
colors = meta.colors(), xlab = NULL,
summary.line = TRUE, summary.conf = FALSE,
main="Cumulative meta-analysis", lwd=1, ...)
## S3 method for class 'meta.cum'
summary(object ,conf.level=NULL,...)
Arguments
ntrt |
Number of subjects in treated/exposed group |
nctrl |
Number of subjects in control group |
ptrt |
Number of events in treated/exposed group |
pctrl |
Number of events in control group |
effects |
Difference between control and treatment group |
stderrs |
Standard errors of |
weights |
Study weights (see |
names |
names or labels for studies |
data |
data frame to interpret variables |
subset |
subset of studies to include |
na.action |
How to handle missing values |
method |
Which meta-analysis method to use |
statistic |
"OR" for odds ratio or "RR" for relative risk. |
logscale |
The |
x , object |
a |
... |
other graphical arguments for |
conf.level |
Coverage for confidence intervals |
colors |
see |
xlab |
X-axis label |
summary.line |
Plot a vertical line at the final summary value? |
summary.conf |
Plot vertical lines at the final confidence interval limits? |
main , lwd |
graphical parameters |
Value
Object of class meta.cum
.
See Also
Examples
data(cochrane)
steroid<-cummeta(n.trt,n.ctrl,ev.trt,ev.ctrl,names=name,data=cochrane,
statistic="RR",method="meta.MH")
plot(steroid)
summary(steroid)
data(catheter)
b <- meta.DSL(n.trt, n.ctrl, col.trt, col.ctrl, data=catheter,
names=Name, subset=c(13,6,5,3,12,4,11,1,8,10,2))
d <- cummeta.summaries(b$logs, b$selogs, names=b$names,
method="random", logscale=TRUE)
plot(d,summary.conf=TRUE)
summary(d)