plot.rmc {rmcorr} | R Documentation |
Plot the repeated measures correlation coefficient.
Description
plot.rmc
produces a scatterplot of measure1
on the x-axis and
measure2
on the y-axis, with a different color used for each subject.
Parallel lines are fitted to each subject's data.
Usage
## S3 method for class 'rmc'
plot(x, palette = NULL, xlab = NULL, ylab = NULL, ...)
Arguments
x |
an object of class "rmc" generated from the |
palette |
the palette to be used. Defaults to the RColorBrewer "Paired" palette |
xlab |
label for the x axis, defaults to the variable name for measure1. |
ylab |
label for the y axis, defaults to the variable name for measure2. |
... |
additional arguments to |
See Also
rmcorr, geom_rmc for plotting with ggplot
Examples
## Bland Altman 1995 data
my.rmc <- rmcorr(participant = Subject, measure1 = PaCO2, measure2 = pH,
dataset = bland1995)
plot(my.rmc)
## Raz et al. 2005 data
my.rmc <- rmcorr(participant = Participant, measure1 = Age, measure2 =
Volume, dataset = raz2005)
library(RColorBrewer)
blueset <- brewer.pal(8, 'Blues')
pal <- colorRampPalette(blueset)
plot(my.rmc, overall = TRUE, palette = pal, overall.col = 'black')
## Gilden et al. 2010 data
my.rmc <- rmcorr(participant = sub, measure1 = rt, measure2 = acc,
dataset = gilden2010)
plot(my.rmc, overall = FALSE, lty = 2, xlab = "Reaction Time",
ylab = "Accuracy")
[Package rmcorr version 0.7.0 Index]