alpha_hat {rlfsm} | R Documentation |
Statistical estimator for alpha
Description
Defined for the two frequencies as
\widehat \alpha_{high} := \frac{\log | \log \varphi_{high} (t_2; \widehat H_{high} (p,k)_n, k)_n| - \log | \log \varphi_{high} (t_1; \widehat H_{high} (p,k)_n, k)_n|}{\log t_2 - \log t_1}
\widehat \alpha_{low} := \frac{\log | \log \varphi_{low} (t_2;k)_n| - \log | \log \varphi_{low} (t_1; k)_n|}{\log t_2 - \log t_1}
Usage
alpha_hat(t1, t2, k, path, H, freq)
Arguments
t1 , t2 |
real number such that t2 > t1 > 0 |
k |
increment order |
path |
sample path of lfsm on which the inference is to be performed |
H |
Hurst parameter |
freq |
Frequency of the motion. It can take two values: "H" for high frequency and "L" for the low frequency setting. |
Details
The function triggers function phi
, thus Hurst parameter is required only in high frequency case. In the low frequency, there is no need to assign H a value because it will not be evaluated.
References
Mazur S, Otryakhin D, Podolskij M (2020). “Estimation of the linear fractional stable motion.” Bernoulli, 26(1), 226–252. https://doi.org/10.3150/19-BEJ1124.
Examples
m<-45; M<-60; N<-2^14-M
alpha<-1.8; H<-0.8; sigma<-0.3
freq='H'
r=1; k=2; p=0.4; t1=1; t2=2
# Estimating alpha in the high frequency case
# using preliminary estimation of H
lfsm<-path(N=N,m=m,M=M,alpha=alpha,H=H,
sigma=sigma,freq='L',disable_X=FALSE,seed=3)$lfsm
H_est<-H_hat(p=p,k=k,path=lfsm)
H_est
alpha_est<-alpha_hat(t1=t1,t2=t2,k=k,path=lfsm,H=H_est,freq=freq)
alpha_est