U_ghuv {rlfsm} | R Documentation |
A dependence structure of 2 random variables.
Description
It is used when random variables do not have finite second moments, and thus, the covariance matrix is not defined.
For X= \int_{\R} g_s dL_s
and Y= \int_{\R} h_s dL_s
with \| g \|_{\alpha}, \| h\|_{\alpha}< \infty
. Then the measure of dependence is given by U_{g,h}: \R^2 \to \R
via
U_{g,h} (u,v)=\exp(- \sigma^{\alpha}{\| ug +vh \|_{\alpha}}^{\alpha} ) - \exp(- \sigma^{\alpha} ({\| ug \|_{\alpha}}^{\alpha} + {\| vh \|_{\alpha}}^{\alpha}))
Usage
U_ghuv(alpha, sigma, g, h, u, v, ...)
Arguments
alpha |
self-similarity parameter of alpha stable random motion. |
sigma |
Scale parameter of lfsm |
g , h |
functions |
v , u |
real numbers |
... |
additional parameters to pass to U_gh and U_g |
Examples
g<-function(x) exp(-x^2)
h<-function(x) exp(-abs(x))
U_ghuv(alpha=1.5, sigma=1, g=g, h=h, u=10, v=15,
rel.tol = .Machine$double.eps^0.25, abs.tol=1e-11)
[Package rlfsm version 1.1.2 Index]