kde_d {rlcv} | R Documentation |
Multivariate kernel density
Description
Multivariate kernel density
Usage
kde_d(x.obs, x.new = NULL, h, stud = FALSE)
Arguments
x.obs |
Training (observed) data (n1 by d matrix, d>=2) |
x.new |
Evaluation data (n2 by d matrix, d>=2); default to x.obs |
h |
Bandwidth (d vector) |
stud |
Indicator for whether data are studentized; default to FALSE |
Details
For multivariate distributions, bandwidth is calculated for studentized data.
Value
Density evaluated at x.new
Author(s)
Ximing Wu xwu@tamu.edu
References
Wu, Ximing (2019), "Robust Likelihood Cross Validation for Kernel Density Estimation," Journal of Business and Economic Statistics, 37(4): 761-770.
Examples
x=matrix(rnorm(200),ncol=2)
x.new=matrix(rnorm(100),ncol=2)
h=c(1,1)
f=kde_d(x.new=x.new,x.obs=x,h=h)
[Package rlcv version 1.0.0 Index]