UDF.Kernel {rkriging} | R Documentation |
User Defined Function (UDF) Kernel
Description
This function specifies a kernel with the user defined R function.
Usage
UDF.Kernel(lengthscale, kernel.function)
Arguments
lengthscale |
a vector for the positive length scale parameters |
kernel.function |
user defined kernel function |
Details
The User Defined Function (UDF) kernel is given by
k(r) = f(r)
where f
is the user defined kernel function that takes r^2
as input,
where
r(x,x^{\prime})=\sqrt{\sum_{i=1}^{p}\left(\frac{x_{i}-x_{i}^{\prime}}{l_{i}}\right)^2},
is the euclidean distance between x
and x^{\prime}
weighted by
the length scale parameters l_{i}
's.
Value
A User Defined Function (UDF) Kernel Class Object.
Author(s)
Chaofan Huang and V. Roshan Joseph
References
Duvenaud, D. (2014). The kernel cookbook: Advice on covariance functions.
Rasmussen, C. E. & Williams, C. K. (2006). Gaussian Processes for Machine Learning. The MIT Press.
See Also
MultiplicativeUDF.Kernel, Get.Kernel, Evaluate.Kernel.
Examples
n <- 5
p <- 3
X <- matrix(rnorm(n*p), ncol=p)
lengthscale <- c(1:p)
kernel.function <- function(sqdist) {return (exp(-sqrt(sqdist)))}
# approach 1
kernel <- UDF.Kernel(lengthscale, kernel.function=kernel.function)
Evaluate.Kernel(kernel, X)
# approach 2
kernel <- Get.Kernel(lengthscale, type="UDF",
parameters=list(kernel.function=kernel.function))
Evaluate.Kernel(kernel, X)