Matern.Kernel {rkriging} | R Documentation |
Generalized Matern Kernel
Description
This function specifies the (Generalized) Matern kernel with any smoothness parameter .
Usage
Matern.Kernel(lengthscale, nu = 2.01)
Arguments
lengthscale |
a vector for the positive length scale parameters |
nu |
a positive scalar parameter that controls the smoothness |
Details
The Generalized Matern kernel is given by
where is the smoothness parameter,
is the modified Bessel function,
is the gamma function,
and
is the euclidean distance between and
weighted by
the length scale parameters
's.
As
, it converges to the Gaussian.Kernel.
Value
A Generalized Matern Kernel Class Object.
Author(s)
Chaofan Huang and V. Roshan Joseph
References
Duvenaud, D. (2014). The kernel cookbook: Advice on covariance functions.
Rasmussen, C. E. & Williams, C. K. (2006). Gaussian Processes for Machine Learning. The MIT Press.
See Also
Matern12.Kernel, Matern32.Kernel, Matern52.Kernel, MultiplicativeMatern.Kernel, Get.Kernel, Evaluate.Kernel.
Examples
n <- 5
p <- 3
X <- matrix(rnorm(n*p), ncol=p)
lengthscale <- c(1:p)
# approach 1
kernel <- Matern.Kernel(lengthscale, nu=2.01)
Evaluate.Kernel(kernel, X)
# approach 2
kernel <- Get.Kernel(lengthscale, type="Matern", parameters=list(nu=2.01))
Evaluate.Kernel(kernel, X)