Matern.Kernel {rkriging}R Documentation

Generalized Matern Kernel

Description

This function specifies the (Generalized) Matern kernel with any smoothness parameter \nu.

Usage

Matern.Kernel(lengthscale, nu = 2.01)

Arguments

lengthscale

a vector for the positive length scale parameters

nu

a positive scalar parameter that controls the smoothness

Details

The Generalized Matern kernel is given by

k(r;\nu)=\frac{2^{1-\nu}}{\Gamma(\nu)}(\sqrt{2\nu}r)^{\nu}K_{\nu}(\sqrt{2\nu}r),

where \nu is the smoothness parameter, K_{\nu} is the modified Bessel function, \Gamma is the gamma function, and

r(x,x^{\prime})=\sqrt{\sum_{i=1}^{p}\left(\frac{x_{i}-x_{i}^{\prime}}{l_{i}}\right)^2}

is the euclidean distance between x and x^{\prime} weighted by the length scale parameters l_{i}'s. As \nu\to\infty, it converges to the Gaussian.Kernel.

Value

A Generalized Matern Kernel Class Object.

Author(s)

Chaofan Huang and V. Roshan Joseph

References

Duvenaud, D. (2014). The kernel cookbook: Advice on covariance functions.

Rasmussen, C. E. & Williams, C. K. (2006). Gaussian Processes for Machine Learning. The MIT Press.

See Also

Matern12.Kernel, Matern32.Kernel, Matern52.Kernel, MultiplicativeMatern.Kernel, Get.Kernel, Evaluate.Kernel.

Examples

n <- 5
p <- 3
X <- matrix(rnorm(n*p), ncol=p)
lengthscale <- c(1:p)

# approach 1
kernel <- Matern.Kernel(lengthscale, nu=2.01)
Evaluate.Kernel(kernel, X)

# approach 2
kernel <- Get.Kernel(lengthscale, type="Matern", parameters=list(nu=2.01))
Evaluate.Kernel(kernel, X) 


[Package rkriging version 1.0.1 Index]