Get.Kriging.Parameters {rkriging} | R Documentation |
Get Kriging Parameters
Description
This function can be used for extracting the estimates of the kriging parameters.
Usage
Get.Kriging.Parameters(kriging)
Arguments
kriging |
a kriging class object |
Value
nllh |
negative log-likelihood of the kriging model |
mu |
mean of the kriging model |
nu2 |
variance of the kriging model |
sigma2 |
variance of the random noise when |
beta |
coefficients of the basis functions for universal kriging |
c |
c for the rational / generalized rational kriging, see Joseph (2024) |
c0 |
c0 for the generalized rational kriging, see Joseph (2024) |
Author(s)
Chaofan Huang and V. Roshan Joseph
References
Joseph, V. R. (2006). Limit kriging. Technometrics, 48(4), 458-466.
Joseph, V. R. (2024). Rational Kriging. Journal of the American Statistical Association.
Rasmussen, C. E. & Williams, C. K. (2006). Gaussian Processes for Machine Learning. The MIT Press.
Santner, T. J., Williams, B. J., Notz, W. I., & Williams, B. J. (2003). The design and analysis of computer experiments (Vol. 1). New York: Springer.
See Also
Examples
# one dimensional example
f <- function(x) {
x <- 0.5 + 2*x
y <- sin(10*pi*x)/(2*x) + (x-1)^4
return (y)
}
set.seed(1234)
# train set
n <- 30
p <- 1
X <- matrix(runif(n),ncol=p)
y <- apply(X, 1, f)
newX <- matrix(seq(0,1,length=1001), ncol=p)
kriging <- Fit.Kriging(X, y, interpolation=TRUE, fit=TRUE, model="OK",
kernel.parameters=list(type="Gaussian"))
Get.Kriging.Parameters(kriging)