Gaussian.Kernel {rkriging} | R Documentation |
Gaussian Kernel
Description
This function specifies the Gaussian / Squared Exponential (SE) / Radial Basis Function (RBF) kernel.
Usage
Gaussian.Kernel(lengthscale)
Arguments
lengthscale |
a vector for the positive length scale parameters |
Details
The Gaussian kernel is given by
k(r)=\exp(-r^2/2),
where
r(x,x^{\prime})=\sqrt{\sum_{i=1}^{p}\left(\frac{x_{i}-x_{i}^{\prime}}{l_{i}}\right)^2}
is the euclidean distance between x
and x^{\prime}
weighted by
the length scale parameters l_{i}
's.
Value
A Gaussian Kernel Class Object.
Author(s)
Chaofan Huang and V. Roshan Joseph
References
Duvenaud, D. (2014). The kernel cookbook: Advice on covariance functions.
Rasmussen, C. E. & Williams, C. K. (2006). Gaussian Processes for Machine Learning. The MIT Press.
See Also
Examples
n <- 5
p <- 3
X <- matrix(rnorm(n*p), ncol=p)
lengthscale <- c(1:p)
# approach 1
kernel <- Gaussian.Kernel(lengthscale)
Evaluate.Kernel(kernel, X)
# approach 2
kernel <- Get.Kernel(lengthscale, type="Gaussian")
Evaluate.Kernel(kernel, X)
[Package rkriging version 1.0.1 Index]