j_query {rjsoncons} | R Documentation |
Query and pivot JSON and NDJSON documents
Description
j_query()
executes a query against a JSON or NDJSON
document, automatically inferring the type of data
and
path
.
j_pivot()
transforms a JSON array-of-objects to an
object-of-arrays; this can be useful when forming a
column-based tibble from row-oriented JSON / NDJSON.
Usage
j_query(
data,
path = "",
object_names = "asis",
as = "string",
...,
n_records = Inf,
verbose = FALSE,
data_type = j_data_type(data),
path_type = j_path_type(path)
)
j_pivot(
data,
path = "",
object_names = "asis",
as = "string",
...,
n_records = Inf,
verbose = FALSE,
data_type = j_data_type(data),
path_type = j_path_type(path)
)
Arguments
data |
a character() JSON string or NDJSON records, or the
name of a file or URL containing JSON or NDJSON, or an R
object parsed to a JSON string using |
path |
character(1) JSONpointer, JSONpath or JMESpath query string. |
object_names |
character(1) order |
as |
character(1) return type. For |
... |
passed to |
n_records |
numeric(1) maximum number of NDJSON records parsed. |
verbose |
logical(1) report progress when parsing large NDJSON files. |
data_type |
character(1) type of |
path_type |
character(1) type of |
Details
j_pivot()
transforms an 'array-of-objects' (typical when the JSON
is a row-oriented representation of a table) to an
'object-of-arrays'. A simple example transforms an array of two
objects each with three fields '[{"a": 1, "b": 2, "c": 3}, {"a": 4, "b": 5, "c": 6}]'
to an object with three fields, each a vector
of length 2 '{"a": [1, 4], "b": [2, 5], "c": [3, 6]}'
. The
object-of-arrays representation corresponds closely to an R
data.frame or tibble, as illustrated in the examples.
j_pivot()
with JMESpath paths are especially useful for
transforming NDJSON to a data.frame
or tibble
Examples
json <- '{
"locations": [
{"name": "Seattle", "state": "WA"},
{"name": "New York", "state": "NY"},
{"name": "Bellevue", "state": "WA"},
{"name": "Olympia", "state": "WA"}
]
}'
j_query(json, "/locations/0/name") # JSONpointer
j_query(json, "$.locations[*].name", as = "R") # JSONpath
j_query(json, "locations[].state", as = "R") # JMESpath
## a few NDJSON records from <https://www.gharchive.org/>
ndjson_file <-
system.file(package = "rjsoncons", "extdata", "2023-02-08-0.json")
j_query(ndjson_file, "{id: id, type: type}")
j_pivot(json, "$.locations[?@.state=='WA']", as = "string")
j_pivot(json, "locations[?@.state=='WA']", as = "R")
j_pivot(json, "locations[?@.state=='WA']", as = "data.frame")
j_pivot(json, "locations[?@.state=='WA']", as = "tibble")
## use 'path' to pivot ndjson one record at at time
j_pivot(ndjson_file, "{id: id, type: type}", as = "data.frame")
## 'org' is a nested element; extract it
j_pivot(ndjson_file, "org", as = "data.frame")
## use j_pivot() to filter 'PushEvent' for organizations
path <- "[{id: id, type: type, org: org}]
[?@.type == 'PushEvent' && @.org != null] |
[0]"
j_pivot(ndjson_file, path, as = "data.frame")
## try also
##
## j_pivot(ndjson_file, path, as = "tibble") |>
## tidyr::unnest_wider("org", names_sep = ".")