| adiff {rjmcmc} | R Documentation |
Automatic Differentiation Using Madness
Description
A wrapper function to the functionality of the madness package.
Converts a given x to a madness object and then applies func to
it, returning the result and the Jacobian for the transformation func.
adiff is used by the rjmcmcpost function.
Usage
adiff(func, x, ...)
Arguments
func |
The function to be differentiated (usually user-defined). |
x |
The values at which to evaluate the function |
... |
Further arguments to be passed to |
Value
A numeric vector or matrix containing the result of the function
evaluation func(x, ...). The "gradient" attribute of this
object contains the Jacobian matrix of the transformation func.
References
Pav, S. E. (2016) Madness: Automatic Differentiation of Multivariate Operations.
See Also
Examples
x2x3 = function(x){
return(c(x^2, x^3))
}
y = adiff(x2x3, c(5,6))
attr(y, "gradient")
[Package rjmcmc version 0.4.5 Index]