adiff {rjmcmc} | R Documentation |
Automatic Differentiation Using Madness
Description
A wrapper function to the functionality of the madness
package.
Converts a given x
to a madness object and then applies func
to
it, returning the result and the Jacobian for the transformation func
.
adiff
is used by the rjmcmcpost
function.
Usage
adiff(func, x, ...)
Arguments
func |
The function to be differentiated (usually user-defined). |
x |
The values at which to evaluate the function |
... |
Further arguments to be passed to |
Value
A numeric vector or matrix containing the result of the function
evaluation func(x, ...)
. The "gradient"
attribute of this
object contains the Jacobian matrix of the transformation func
.
References
Pav, S. E. (2016) Madness: Automatic Differentiation of Multivariate Operations.
See Also
Examples
x2x3 = function(x){
return(c(x^2, x^3))
}
y = adiff(x2x3, c(5,6))
attr(y, "gradient")
[Package rjmcmc version 0.4.5 Index]