rjags-package | Bayesian graphical models using MCMC |
adapt | Adaptive phase for JAGS models |
as.mcmc.list.mcarray | Objects for representing MCMC output |
coda.samples | Generate posterior samples in mcmc.list format |
coef.jags | Functions for manipulating jags model objects |
dic | Generate penalized deviance samples |
dic.samples | Generate penalized deviance samples |
diffdic | Differences in penalized deviance |
jags.model | Create a JAGS model object |
jags.samples | Generate posterior samples |
JAGS.version | JAGS version |
jags.version | JAGS version |
LINE | Linear regression example |
list.factories | Advanced control over JAGS |
list.modules | Dynamically load JAGS modules |
list.samplers | Functions for manipulating jags model objects |
load.module | Dynamically load JAGS modules |
mcarray.object | Objects for representing MCMC output |
parallel.seeds | Get initial values for parallel RNGs |
print.mcarray | Objects for representing MCMC output |
read.bugsdata | Read data files for jags models |
read.data | Deprecated Functions in the rjags package |
read.jagsdata | Read data files for jags models |
rjags | Bayesian graphical models using MCMC |
rjags-deprecated | Deprecated Functions in the rjags package |
set.factory | Advanced control over JAGS |
summary.mcarray | Objects for representing MCMC output |
unload.module | Dynamically load JAGS modules |
update.jags | Update jags models |
variable.names.jags | Functions for manipulating jags model objects |