risksetROC {risksetROC} | R Documentation |
Incident/Dynamic (I/D) ROC curve, AUC and integrated AUC (iAUC) estimation of censored survival data
Description
This function creates risksetROC from a survival data set
Usage
risksetROC(Stime, entry=NULL, status, marker, predict.time, method="Cox",
span=NULL, order=1, window="asymmetric", prop=0.5,
plot=TRUE, type="l", xlab="FP", ylab="TP",
...)
Arguments
Stime |
For right censored data, this is the follow up time. For left truncated data, this is the ending time for the interval. |
entry |
For left truncated data, this is the entry time of the interval. The default is set to NULL for right censored data. |
status |
survival status, 1 if had an event and 0 otherwise |
marker |
marker |
predict.time |
time point of interest |
method |
either of "Cox", "LocalCox" and "Schoenfeld", default is "Cox" |
span |
bandwidth parameter that controls the size of a local neighborhood, needed for method="LocalCox" or method="Schoenfeld" |
order |
0 or 1, locally mean if 0 and local linear if 1, needed for method="Schoenfeld", default is 1 |
window |
either of "asymmetric" or "symmetric", default is asymmetric, needed for method="LocalCox" |
prop |
what proportion of the time-interval to consider when doing a local Cox fitting at predict.time, needed for method="LocalCox", default is 0.5. |
plot |
TRUE or FALSE, default is TRUE |
type |
default is "l", can be either of "p" for points, "l" for line, "b" for both |
xlab |
label for x-axis |
ylab |
label for y-axis |
... |
additional plot arguments |
Details
This function creates and plots ROC based on incident/dynamic definition of Heagerty, et. al. based on a survival data and marker values. If proportional hazard is assumed then method="Cox" can be used. In case of non-proportional hazard, either of "LocalCox" or "Schoenfeld" can be used. These two methods differ in how the smoothing is done. If plot="TRUE" then the ROC curve is plotted with the diagonal line. Additional plot arguments can be supplied.
Value
Returns a list of the following items:
eta |
unique marker values for calculation of TP and FP |
TP |
True Positive values corresponding to unique marker values |
FP |
False Positive values corresponding to unique marker values |
AUC |
Area Under (ROC) Curve at time predict.time |
Author(s)
Paramita Saha
References
Heagerty, P.J., Zheng Y. (2005) Survival Model Predictive Accuracy and ROC curves Biometrics, 61, 92 – 105
See Also
llCoxReg(), SchoenSmooth(), CoxWeights()
Examples
library(MASS)
data(VA)
survival.time=VA$stime
survival.status=VA$status
score <- VA$Karn
cell.type <- factor(VA$cell)
tx <- as.integer( VA$treat==1 )
age <- VA$age
survival.status[survival.time>500 ] <- 0
survival.time[survival.time>500 ] <- 500
fit0 <- coxph( Surv(survival.time,survival.status)
~ score + cell.type + tx + age, na.action=na.omit )
eta <- fit0$linear.predictor
ROC.CC30=risksetROC(Stime=survival.time, status=survival.status,
marker=eta, predict.time=30, method="Cox",
main="ROC Curve", lty=2, col="red")