SchoenSmooth {risksetROC} | R Documentation |
Incident/Dynamic (I/D) ROC curve, AUC and integrated AUC (iAUC) estimation of censored survival data
Description
This function smooths the Schoenfeld residuals using Epanechnikov's optimal kernel.
Usage
SchoenSmooth(fit, Stime, status, span=0.40, order=0, entry=NULL)
Arguments
fit |
the result of fitting a Cox regression model, using the coxph function |
Stime |
Survival times in case of right censored data and exit time for left truncated data |
status |
Survival status |
span |
bandwidth parameter that controls the size of a local neighborhood |
order |
0 or 1, locally mean if 0 and local linear if 1 |
entry |
entry time when left censored data is considered, default is NULL for only right censored data |
Details
This function smooths the Schoenfeld residuals to get an estimate of time-varying effect of the marker using Epanechnikov's optimal kernel using either local mean or local linear smoother.
Value
Returns a list of following items:
time |
failure times |
beta |
estimate of time-varying parameter |
Author(s)
Patrick J. Heagerty
References
Heagerty, P.J., Zheng Y. (2005) Survival Model Predictive Accuracy and ROC curves Biometrics, 61, 92 – 105
Examples
data(pbc)
## considering only randomized patients
pbc1 <- pbc[1:312,]
## create new censoring variable combine 0,1 as 0, 2 as 1
survival.status <- ifelse( pbc1$status==2, 1, 0)
survival.time <- pbc1$fudays
pbc1$status1 <- survival.status
fit <- coxph( Surv(fudays,status1) ~ log(bili) +
log(protime) +
edema +
albumin +
age,
data=pbc1 )
eta5 <- fit$linear.predictors
x <- eta5
nobs <- length(survival.time[survival.status==1])
span <- 1.5*(nobs^(-0.2))
fitCox5 <- coxph( Surv(survival.time,survival.status) ~ x )
bfnx1.1 <- SchoenSmooth( fit=fitCox5, Stime=survival.time, status=survival.status,
span=span, order=1)
bfnx1.0 <- SchoenSmooth( fit=fitCox5, Stime=survival.time, status=survival.status,
span=span, order=0)
plot(bfnx1.1$time, bfnx1.1$beta, type="l", xlab="Time", ylab="beta(t)")
lines(bfnx1.0$time, bfnx1.0$beta, lty=3)