risk_mod_random_start {riskscores} | R Documentation |
Run risk model with random start
Description
Runs nstart
iterations of risk_mod()
, each with a different
warm start, and selects the best model. Each coefficient start is
randomly selected as -1, 0, or 1.
Usage
risk_mod_random_start(
X,
y,
weights = NULL,
lambda0 = 0,
a = -10,
b = 10,
max_iters = 100,
tol = 1e-05,
seed = NULL,
nstart = 5
)
Arguments
X |
Input covariate matrix with dimension |
y |
Numeric vector for the (binomial) response variable. |
weights |
Numeric vector of length |
lambda0 |
Penalty coefficient for L0 term (default: 0).
See |
a |
Integer lower bound for coefficients (default: -10). |
b |
Integer upper bound for coefficients (default: 10). |
max_iters |
Maximum number of iterations (default: 100). |
tol |
Tolerance for convergence (default: 1e-5). |
seed |
An integer that is used as argument by |
nstart |
Number of different random starts to try (default: 5). |